Biomedical Studies and Cellular Imaging via Atomic Force Microscopy
通过原子力显微镜进行生物医学研究和细胞成像
基本信息
- 批准号:9552577
- 负责人:
- 金额:$ 22.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAlzheimer&aposs DiseaseAmyloid beta-ProteinAntigensAntineoplastic AgentsAreaAtomic Force MicroscopyBehaviorBiologicalBiomedical EngineeringBiotechnologyBrainCarbon NanotubesCell AdhesionCell CycleCell LineCellsClathrinClinicalCollaborationsCollagenCommunicationComplexCrystallizationCytoskeletonDNADNA-Protein InteractionDNA-protein crosslinkDelawareDevelopmentDevelopmental BiologyDiseaseEndocytosisEnvironmentEnzymesExocytosisExtracellular MatrixExtramural ActivitiesFiberGelHealth SciencesHumanHumpback DolphinsImageImmune responseInstitutesInvestigationLaboratoriesLipidsLiposomesLiquid substanceMalariaMalaria VaccinesMalignant NeoplasmsMalignant neoplasm of lungMasksMedicalMembraneMembrane MicrodomainsMethodologyMethodsMicroscopyMicrotubulesMolecular ConformationMolecular StructureNanotechnologyNational Institute of Allergy and Infectious DiseaseNational Institute of Biomedical Imaging and BioengineeringNational Institute of Child Health and Human DevelopmentNational Institute of Dental and Craniofacial ResearchNational Institute of Neurological Disorders and StrokeNeuronsOpticsParasitesPathway interactionsPhasePhysiologicalPlasmodium falciparumProductionPropertyProteinsPublic HealthPublishingQiQuartzRecombinant ProteinsResearchResearch PersonnelScientistSpainSpectrum AnalysisStem cellsStructureSurfaceSynaptic TransmissionSystemTechnologyTexasTissuesUnited States National Institutes of HealthUniversitiesVaccinesVirus-like particleWorkbiophysical analysisbiophysical propertiescancer cellcellular imagingcircumsporozoite proteinfightingganggrapheneimprovedinstrumentationmacromoleculemathematical analysismathematical modelmigrationmolecular imagingmultidisciplinarymultimodalitynanobiotechnologynanofabricationnanomechanicalnanomechanicsnanomedicinenanoparticleoptical imagingpathogenreceptorreceptor mediated endocytosisreconstitutionscale upsingle moleculetheranosticstraffickingtumorvaccine candidate
项目摘要
We have continued to develop selective biophysical measurement systems (biological atomic force microscopy (Bio-AFM) platforms, Quartz Crystal Microbalance-Dissipation (QCM-D), and optical microscopy and spectroscopy), and to apply these technologies to important biomedical investigations in collaboration with outstanding NIH intramural and extramural scientists. We are working toward broader and more insightful applications of multifunctional, multimodal, and multiplatform AFM imaging and single molecule force spectroscopy (SMFS) for cellular and macromolecular studies.
On biomedical applications, we have continued our broad range of collaborations that include:
(1) We have advanced our commitment to developing a better clinical vaccine toward enhanced immunological response and eventual eradication of malaria. Over several years and via Bio-AFM and related bioanalysis, we have investigated the macromolecular structure and nanomechanical properties of more and malaria vaccine candidates and virus-like-particle (VLP) or liposome carriers with Dr. David Narum (NIAID, NIH) and other collaborators. These malaria protein antigens and vaccine carriers are produced via recombinant-protein biotechnology, purified, and characterized in a manner suitable for human trials and scale-up production. Biophysical characterization at single macromolecule and assembly level using Bio-AFM imaging and force spectroscopy are helping to define these vaccine constructs along the developmental phases. In this year, we worked on extracting and characterizing Plasmodium falciparum lipid rafts and GPI-anchored proteins to improve mechanistic understanding of the malaria parasites and pathogen-host interactions. This work follows upon our published observation of a reversible conformation change and adhesion domain masking in the Plasmodium falciparum circumsporozoite protein (CSP), the leading malaria vaccine target.
(2) We have expanded our collaborations on multifunctional nanomedicine and theranostics with Dr. Xiaoyuan Chen (laboratory of Molecular Imaging and Nanomedicine, NIBIB) and co-investigators including Dr. Peng Huang (NIBIB) and Dr. Zhe Wang (NIBIB). Focusing on understanding and fighting cancer, we have contributed to several published and ongoing studies such as using tumor-specific formation of enzyme-instructed supramolecular assemblies as cancer theranostics. We are applying Bio-AFM and QCM-D methodology to investigate nanoparticle theranostics, cancer cells and stem cells, and other biomedical systems.
(3) We have continued our multi-year Bio-AFM studies of protein clathrin and assemblies with collaborators including Prof. Eileen Lafer and Prof. Rui Sousa (Univ. Texas Health Sciences Center, San Antonio), Dr. Ralph Nossal (NICHD) and Dr. Dan Sackett (NICHD)in the key area of the receptor-mediated endocytosis and intracellular trafficking. This collaboration has expanded toward bio-AFM studies of microtubules interacting with several approved or developing anti-cancer drugs. Related to exocytosis and endocytosis, we are collaborating also with Dr. Ling-gang Wu (NINDS) and coworkers to better understand synaptic transmission and neuronal communications in brain.
(4) We have collaborated with Dr. Andrew Doyle and Dr. Kenneth Yamada (Laboratory of Cell and Developmental Biology, NIDCR) and with Dr. Raimon Sunyer (Institute for Bioengineering of Catalonia, Spain) on nanomechanics and structural properties of reconstituted extra cellular matrix (ECM)-like collagen gels via Bio-AFM force spectroscopy to investigate cell adhesion, migration, and other dynamic behaviors. We have refined force spectroscopy and quantitative nanomechnical mapping (QNM) approaches to explore more completely tissue-mimicking soft material and tissue specific extracellular matrices.
(5) With Dr. Curtis Meuse(NIST) and coworkers, we have advanced our Bio-AFM and biophysical studies of amyloid-beta fibrils in the Alzheimer's disease, especially to resolve assembly pathways in physiologically relevant fluid and surface environments. We advanced on a project with Prof. Qi Lu (Delaware State University) and co-investigators, on the effect of nanoparticles on lipid domains and membrane properties. Finally, we are combining AFM and optical microscopy in other continuing and new collaborations, including biomembranes, protein assemblies, DNA and protein crosslinking, DNA-protein interactions and cell cycles, that are critically important to disease mechanisms and bionanotechnology.
我们继续开发选择性生物物理测量系统(生物原子力显微镜(Bio-AFM)平台,石英晶体微平衡耗散(QCM-D)和光学显微镜和光谱学),并与优秀的NIH校内和校外科学家合作,将这些技术应用于重要的生物医学研究。我们致力于将多功能、多模态、多平台的AFM成像和单分子力谱(SMFS)应用于细胞和大分子研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Albert J Jin其他文献
Albert J Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Albert J Jin', 18)}}的其他基金
Muscle Protein Biophysics Via Atomic Force Microscopy
通过原子力显微镜研究肌肉蛋白生物物理学
- 批准号:
6548669 - 财政年份:
- 资助金额:
$ 22.56万 - 项目类别:
Hyperlens Imaging of Synaptic Vesicle Dynamics
突触小泡动力学的 Hyperlens 成像
- 批准号:
7967920 - 财政年份:
- 资助金额:
$ 22.56万 - 项目类别:
Biomedical Studies and Cellular Imaging via Atomic Force Microscopy
通过原子力显微镜进行生物医学研究和细胞成像
- 批准号:
8933878 - 财政年份:
- 资助金额:
$ 22.56万 - 项目类别:
Hyperlens Imaging of Synaptic Vesicle Dynamics
突触小泡动力学的 Hyperlens 成像
- 批准号:
7734391 - 财政年份:
- 资助金额:
$ 22.56万 - 项目类别:
Biomedical Studies and Cellular Imaging via Atomic Force Microscopy
通过原子力显微镜进行生物医学研究和细胞成像
- 批准号:
8340617 - 财政年份:
- 资助金额:
$ 22.56万 - 项目类别:
Biomedical Studies and Cellular Imaging via Atomic Force Microscopy
通过原子力显微镜进行生物医学研究和细胞成像
- 批准号:
8743769 - 财政年份:
- 资助金额:
$ 22.56万 - 项目类别: