Structural Basis of HDAC Substrate Specificity and Inhibition

HDAC 底物特异性和抑制的结构基础

基本信息

  • 批准号:
    9394954
  • 负责人:
  • 金额:
    $ 5.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-03 至 2020-08-02
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Reversible protein lysine acetylation is a fundamental posttranslational modification observed in histone and non-histone proteins. Lysine acetylation can alter protein-protein and protein-DNA interactions, protein stability, and enzyme activation/deactivation. Among the major regulators of lysine acetylation is the histone deacetylase (HDAC) family. Of the 18 known human HDACs, 11 are metal-dependent hydrolases related to the acetylpolyamine amidohydrolases (APAHs). The HDACs contribute to the regulation of gene expression and many other critical cellular processes. Notably, abnormal lysine acetylation is observed in multiple human disorders, including cancer; thus HDACs are a validated drug target. Despite their critical biological functions and clinical roles as drug targets, little is known about the molecular basis for HDAC substrate specificity and inhibition. This is particularly the case for HDACs 10 and 11, which are the least well characterized of the metal-dependent HDACs. Our preliminary studies coupled with phylogenetic comparisons suggest that HDACs 10 and 11 may function as dual acetyllysine and acetylpolyamine deacetylases with unique substrate binding site architectures. However, how HDAC10 and 11 could accommodate small polyamine substrates as well as large protein substrates containing sissile acetyllysine moieties is unclear. In addition, while classic HDAC inhibitors such as SAHA are known to inhibit HDACs 10 and 11, the molecular basis for this inhibition is unknown as no HDAC10-inhibitor or HDAC11-inibitor complex structures are available. In fact, no structure of HDAC11 is available, despite the fact that HDAC11 represents a unique class of HDAC due to its limited sequence identity with other HDACs. We propose to study structure-function relationships for HDACs 10 and 11 to establish a molecular foundation for understanding substrate recognition, catalysis, and inhibition. Due to a lack of structural and mechanistic studies focusing on HDACs 10 and 11, we are currently unequipped to design HDAC isozyme-specific inhibitors. I propose to study the molecular mechanisms of HDAC substrate recognition and inhibition by (1) exploring the structural basis of HDAC10 substrate specificity; (2) defining the structural basis of HDAC10 inhibition; and (3) determining structure-function relationships for HDAC11. As mentioned above, aberrant lysine acetylation is a hallmark of certain cancers and other human disorders; therefore HDACs are critical drug targets. Currently, four broad-specificity HDAC inhibitors are FDA-approved for cancer chemotherapy, but isozyme-specific HDAC inhibitors are mostly unavailable. Our studies aim to better understand the structure and function of poorly characterized HDACs with the goal of facilitating the design of specific HDAC inhibitors for use in human disorders, particularly cancer.
项目摘要/摘要 可逆组蛋白赖氨酸乙酰化是一种基本的翻译后修饰 和非组蛋白。赖氨酸乙酰化可以改变蛋白质-蛋白质和蛋白质-DNA相互作用,蛋白质 稳定性和酶的激活/失活。组蛋白是赖氨酸乙酰化的主要调节因子之一。 脱乙酰酶(HDAC)家族。在已知的18个人类HDAC中,有11个是金属依赖的水解酶,与 乙酰多胺酰胺水解酶(APAHs)。HDAC对基因表达的调控起着重要作用 以及许多其他关键的细胞过程。值得注意的是,在多个人类中观察到异常的赖氨酸乙酰化。 疾病,包括癌症;因此,HDAC是一个有效的药物靶点。尽管它们具有重要的生物学功能 和作为药物靶点的临床作用,对HDAC底物特异性和 抑制力。HDAC 10和11尤其如此,它们最不能很好地描述 金属依赖型HDAC。 我们的初步研究和系统发育比较表明,HDAC 10和11可能 作为双乙酰赖氨酸和乙酰多胺脱乙酰酶,具有独特的底物结合部位 建筑。然而,HDAC10和11如何适应小的多胺底物以及大的 含有女性乙酰赖氨酸部分的蛋白质底物尚不清楚。此外,虽然经典的HDAC抑制剂 如SAHA等已知能抑制HDAC 10和11,这种抑制的分子基础未知为NO HDAC10-抑制剂或HDAC11-抑制物复合结构可供选择。事实上,HDAC11的任何结构都不是 尽管由于其有限的序列同一性,HDAC11代表了唯一的一类HDAC 与其他HDAC一起工作。我们建议研究HDAC 10和11的结构-功能关系,以建立 了解底物识别、催化和抑制的分子基础。由于缺乏 结构和机械研究侧重于HDAC 10和11,我们目前没有装备来设计 HDAC同工酶特异性抑制剂。 我建议通过(1)来研究HDAC底物识别和抑制的分子机制。 探讨HDAC10底物专一性的结构基础;(2)确定 HDAC10抑制;以及(3)确定HDAC11的结构-功能关系。如上所述 上图中,异常的赖氨酸乙酰化是某些癌症和其他人类疾病的标志;因此 HDAC是关键的药物靶标。目前,FDA批准了四种广特异性HDAC抑制剂用于癌症 化疗,但同工酶特异性的HDAC抑制剂大多不可用。我们的研究旨在更好地 了解特性不佳的HDAC的结构和功能,以促进设计 用于治疗人类疾病,特别是癌症的特定HDAC抑制剂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen A. Shinsky其他文献

Stephen A. Shinsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了