Structural Basis of HDAC Substrate Specificity and Inhibition
HDAC 底物特异性和抑制的结构基础
基本信息
- 批准号:9394954
- 负责人:
- 金额:$ 5.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-03 至 2020-08-02
- 项目状态:已结题
- 来源:
- 关键词:AcetylationActive SitesAmidohydrolasesAntineoplastic AgentsArchitectureAutophagocytosisBinding SitesBiochemicalBiologicalBiological AssayBiological ProcessCancerousCatalysisCell physiologyCellsChemotherapy-Oncologic ProcedureClinicClinicalComplexConflict (Psychology)CoupledCrystallizationDNA Mismatch Repair Protein MSH2DNA-Protein InteractionDataDeacetylaseDevelopmentDiscriminationDiseaseDrug TargetingEnzyme ActivationEnzymesExhibitsFDA approvedFamilyFoundationsGene Expression RegulationGoalsHDAC10 geneHDAC11 geneHistone DeacetylaseHistone Deacetylase InhibitorHistonesHumanHydrolaseIn VitroIsoenzymesKineticsLeadLengthLiquid ChromatographyLysineMalignant NeoplasmsMass Spectrum AnalysisMeasurementMediatingMetalsMolecularMolecular ConformationPeptidesPhosphorylationPhylogenetic AnalysisPlayPolyaminesPost-Translational Protein ProcessingProcessProteinsProteomeReportingResolutionRoleSIRT1 geneSiteSpecificityStructureStructure-Activity RelationshipSubstrate SpecificityVariantVorinostatWorkX-Ray CrystallographyZebrafishbasecell growth regulationdesigndrug developmentexperimental studyhistone acetyltransferasehuman diseaseinhibitor/antagonistmembernon-histone proteinresponse
项目摘要
Project Summary/Abstract
Reversible protein lysine acetylation is a fundamental posttranslational modification observed in histone
and non-histone proteins. Lysine acetylation can alter protein-protein and protein-DNA interactions, protein
stability, and enzyme activation/deactivation. Among the major regulators of lysine acetylation is the histone
deacetylase (HDAC) family. Of the 18 known human HDACs, 11 are metal-dependent hydrolases related to
the acetylpolyamine amidohydrolases (APAHs). The HDACs contribute to the regulation of gene expression
and many other critical cellular processes. Notably, abnormal lysine acetylation is observed in multiple human
disorders, including cancer; thus HDACs are a validated drug target. Despite their critical biological functions
and clinical roles as drug targets, little is known about the molecular basis for HDAC substrate specificity and
inhibition. This is particularly the case for HDACs 10 and 11, which are the least well characterized of the
metal-dependent HDACs.
Our preliminary studies coupled with phylogenetic comparisons suggest that HDACs 10 and 11 may
function as dual acetyllysine and acetylpolyamine deacetylases with unique substrate binding site
architectures. However, how HDAC10 and 11 could accommodate small polyamine substrates as well as large
protein substrates containing sissile acetyllysine moieties is unclear. In addition, while classic HDAC inhibitors
such as SAHA are known to inhibit HDACs 10 and 11, the molecular basis for this inhibition is unknown as no
HDAC10-inhibitor or HDAC11-inibitor complex structures are available. In fact, no structure of HDAC11 is
available, despite the fact that HDAC11 represents a unique class of HDAC due to its limited sequence identity
with other HDACs. We propose to study structure-function relationships for HDACs 10 and 11 to establish a
molecular foundation for understanding substrate recognition, catalysis, and inhibition. Due to a lack of
structural and mechanistic studies focusing on HDACs 10 and 11, we are currently unequipped to design
HDAC isozyme-specific inhibitors.
I propose to study the molecular mechanisms of HDAC substrate recognition and inhibition by (1)
exploring the structural basis of HDAC10 substrate specificity; (2) defining the structural basis of
HDAC10 inhibition; and (3) determining structure-function relationships for HDAC11. As mentioned
above, aberrant lysine acetylation is a hallmark of certain cancers and other human disorders; therefore
HDACs are critical drug targets. Currently, four broad-specificity HDAC inhibitors are FDA-approved for cancer
chemotherapy, but isozyme-specific HDAC inhibitors are mostly unavailable. Our studies aim to better
understand the structure and function of poorly characterized HDACs with the goal of facilitating the design of
specific HDAC inhibitors for use in human disorders, particularly cancer.
项目摘要/摘要
可逆蛋白质赖氨酸乙酰化是在组蛋白中观察到的基本翻译后修饰
和非历史蛋白质。赖氨酸乙酰化可以改变蛋白质蛋白质和蛋白-DNA相互作用,蛋白
稳定性和酶激活/失活。在赖氨酸乙酰化的主要调节剂中,是组蛋白
脱乙酰基酶(HDAC)家族。在18个已知的人类HDAC中,有11个是与金属依赖性水解酶相关的
乙酰丙二胺氨基氢酶(APAHS)。 HDAC有助于基因表达的调节
以及许多其他关键细胞过程。值得注意的是,在多个人类中观察到异常的赖氨酸乙酰化
包括癌症在内的疾病;因此,HDAC是经过验证的药物靶标。尽管它们具有关键的生物学功能
以及作为药物靶标的临床作用,对HDAC底物特异性的分子基础知之甚少
抑制。 HDACS 10和11尤其是这种情况,这是最不充分的特征
金属依赖性HDAC。
我们的初步研究结合系统发育比较,表明HDACS 10和11月11日
用独特的底物结合位点充当双乙酰透析和乙酰聚丙胺脱乙酰基酶
体系结构。但是,HDAC10和11如何容纳小型多胺基材以及大型
含有进酸乙酰透析部分的蛋白质底物尚不清楚。另外,经典的HDAC抑制剂
众所周知,SAHA抑制HDACS 10和11,这种抑制的分子基础未知为NO
提供HDAC10抑制剂或HDAC11-INIOMITOR复合物结构。实际上,HDAC11的结构没有
尽管HDAC11代表了一类HDAC,但由于其序列身份有限,可用
与其他HDAC。我们建议研究HDAC 10和11的结构功能关系,以建立一个
理解底物识别,催化和抑制的分子基础。由于缺乏
侧重于HDACS 10和11的结构和机械研究,我们目前未能设计
HDAC同工酶特异性抑制剂。
我建议研究HDAC底物识别和抑制(1)的分子机制
探索HDAC10底物特异性的结构基础; (2)定义结构性基础
HDAC10抑制; (3)确定HDAC11的结构 - 功能关系。如前所述
上面,异常的赖氨酸乙酰化是某些癌症和其他人类疾病的标志。所以
HDAC是关键的药物靶标。目前,四个广泛的HDAC抑制剂已通过FDA批准用于癌症
化学疗法,但同工酶特异性的HDAC抑制剂主要不可用。我们的研究旨在更好
了解较差的HDAC的结构和功能,以促进设计
特定的HDAC抑制剂用于人类疾病,尤其是癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen A. Shinsky其他文献
Stephen A. Shinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Regulation of NF-kappaB2 by TSA: Role of Acetylation
TSA 对 NF-kappaB2 的调节:乙酰化的作用
- 批准号:
6851620 - 财政年份:2005
- 资助金额:
$ 5.67万 - 项目类别:
Regulation of NF-kappaB2 by TSA: Role of Acetylation
TSA 对 NF-kappaB2 的调节:乙酰化的作用
- 批准号:
7121972 - 财政年份:2005
- 资助金额:
$ 5.67万 - 项目类别: