SCN5A (Nav1.5): Predicting the Consequence of Missense Single- Nucleotide Polymorphisms.

SCN5A (Nav1.5):预测错义单核苷酸多态性的后果。

基本信息

  • 批准号:
    9224146
  • 负责人:
  • 金额:
    $ 12.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-15 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Candidate Background: In graduate school at the University of Virginia, I built on my undergraduate spectroscopy education by using spectroscopic tools to investigate membrane protein flexibility. As a Postdoctoral Fellow at Vanderbilt, I transitioned to membrane protein structural biology involved in human disease, specifically KCNQ and KCNE family-associated channelopathies. As a Postdoctoral Fellow, I have been involved in several projects concerning the structural underpinnings of disease mechanisms, most recently proposing a mechanism for diminished apical chloride secretion through an estrogen-induced loss of KCNQ1- KCNE3 channel conduction. Research Strategy: The human voltage-gated sodium channel Nav1.5 (encoded by SCN5A) is implicated in several diseases of the heart including dilated cardiomyopathy, cardiac conduction disease, sick sinus syndrome, type 3 longQT syndrome, and Brugada syndrome. Several algorithms accurately predict SCN5A variants that are ultimately harmful (SIFT, PolyPhen-2, PredSNP, etc.). However, there is a significant gap in the negative predictive ability of these methods, i.e. the ability to accurately classify a variant as benign. The approach I am proposing is to tackle this problem on two fronts: 1) incorporating channel-specific, quantitative information-rich data into predictive model construction—the objective being to predict channel function, instead of disease- inducing propensity—and 2) including a set of point mutation variants enriched in WT/neutral phenotypes to improve discrimination power during model training and evaluation. This project aims to ultimately predict Nav1.5 channel phenotypes for all possible amino-acid changing single nucleotide polymorphisms (nsSNP) by balancing high-throughput computation and rigorous experimental validation with model systems: predicting the nearly 15,000 possible SCN5A missense nsSNPs is currently only feasible in silico, i.e. leveraging calculable channel-specific protein sequence and structure-based features. The availability of a high-throughput electrophysiology instrument allows for an unprecedented amassing of ion channel functional output from heterologously expressed Nav1.5; the evaluation of SCN5A variants impact on action potential in the more native like human induced pluripotent stem cell cardiomyocytes is possible in low-throughput. During the mentored (K99) phase of this award, I will generate (mis)trafficking and electrophysiology current output data from missense nsSNPs of SCN5A, focusing on the Voltage-Sensing Module (VSM) of domain IV (Aim 1) and train an SCN5A VSM IV-specific phenotype prediction model using trafficking and electrophysiology data from Aim 1 and the literature (Aim 2). As an independent investigator, I will determine structure and flexibility-induced changes from selected variants using a combination of Rosetta modeling and nuclear magnetic resonance (NMR) to refine the predictive model (Aim 3). Career Development and Training: My training proposal is ambitious covering several disciplines, some of which will be new to me. The skills I will acquire are developing computational predictive models of ion channel phenotypes, trafficking/expression quantitation through Fluorescence Activated Cell Sorting (FACS), CRISPR/Cas9 gene manipulation, and hiPSC cardiomyocyte production. Though there are many activities planned, I will be trained directly in the laboratories of prominent scientists in their respective fields: Charles Sanders, Jens Meiler, and Dan Roden.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brett M Kroncke其他文献

Brett M Kroncke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brett M Kroncke', 18)}}的其他基金

Integrating KCNH2 Variant-Specific Features and Heterozygote Phenotypes to Estimate Long QT Penetrance
整合 KCNH2 变体特异性特征和杂合子表型来估计长 QT 外显率
  • 批准号:
    10557122
  • 财政年份:
    2022
  • 资助金额:
    $ 12.25万
  • 项目类别:
Integrating KCNH2 Variant-Specific Features and Heterozygote Phenotypes to Estimate Long QT Penetrance
整合 KCNH2 变体特异性特征和杂合子表型来估计长 QT 外显率
  • 批准号:
    10343134
  • 财政年份:
    2022
  • 资助金额:
    $ 12.25万
  • 项目类别:
Structural rationale for open-state-inducing mutation in human Iks-producing potassium channel complex
产生人 Iks 的钾通道复合物中开放态诱导突变的结构原理
  • 批准号:
    8834238
  • 财政年份:
    2015
  • 资助金额:
    $ 12.25万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.25万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 12.25万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12.25万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12.25万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 12.25万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 12.25万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 12.25万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.25万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 12.25万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 12.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了