Neural circuit mechanisms for color vision
色觉的神经回路机制
基本信息
- 批准号:9579705
- 负责人:
- 金额:$ 40.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimal ModelAnimalsBehaviorBehavioral AssayBrainBrain regionCodeColorColor PerceptionColor VisionsComplexComputational algorithmConeCuesDataDevelopmentDiscriminationDrosophila genusDrosophila melanogasterElectron MicroscopyElectrophysiology (science)EyeGeneticGenetic ModelsGoalsHumanIndividualIntentionInvertebratesInvestigationLateral Geniculate BodyLightLinkLogicMammalsMeasuresMethodsModelingNeuronsOrganismOutputPathologyPathway interactionsPerceptionPhotoreceptorsPopulationProblem SolvingProcessPropertyResearchRetinaRhodopsinRoleSensorySignal TransductionSynapsesSystemTechniquesVisionVisualVisual system structurecell typeexperimental studyflyin vivo two-photon imagingmemberneural circuitneuromechanismneuronal circuitrynovelobject recognitionoperationparallel computerpostsynapticpostsynaptic neuronsrelating to nervous systemresponsetoolvisual informationvisual processing
项目摘要
Color vision is an important aspect of our perception of the world, enhancing our recognition of objects in complex
visual scenes and allowing us to assign them an identity and quality. How are colors encoded in the brain?
Despite decades of research, this question remains unanswered. It is widely accepted that color opponent
neurons, responding with opposite polarity to wavelengths in different parts of the spectrum, are the building
blocks for color vision. However, how color opponent neuron signals are combined to give rise to hue-specific
neurons, with narrow spectral sensitivity, and how these neurons contribute to color perception is unknown.
Analyses of color circuits in a genetically tractable organism are critical to answering these questions. Drosophila
melanogaster provides a powerful system to investigate how a compact brain solves the problem of color coding,
combining genetic access to cell-type-specific neural populations, a well-defined neural anatomy, and
sophisticated behaviors. Moreover, vertebrate and invertebrate visual systems present many functional
similarities. The fact that these diverse systems show convergence in solutions to visual processing problems
motivates our investigation in a simple model, with the intention of extracting fundamental principles of relevance
to mammalian systems. Fruit flies are capable color discrimination and have the hardware necessary for
wavelength comparison: four types of cone-like photoreceptors each expressing a unique narrow-band
rhodopsin of different wavelength sensitivity, ranging from UV to green. However, the way spectral information
from these photoreceptors is processed in the brain is unknown and is the focus of this proposal. We will use
genetic neural manipulation techniques, in vivo two-photon imaging, electrophysiology, and behavioral assays
augmented by quantitative analysis and modeling, to identify the computational algorithms and neural
mechanisms that govern color vision. Aim 1 will ask what kind of spectrally opponent mechanisms exist in
Drosophila and determine the identity of neurons and synaptic interactions in the underlying circuits. We will, in
addition, generate tools to disrupt color opponent signals. Aim 2 will use connectomics data in conjunction with
tracing methods to define and functionally characterize color circuits postsynaptic to color photoreceptors. We
will investigate how color-opponent signals are integrated to give rise to higher order color neurons. Aim 3 will
characterize how the response of neurons in these circuits support both innate and learned color-guided
behaviors, marking an experimental effort to draw a causal link between color opponency, color circuits and color
perception, an approach that has been difficult in classical, non-genetically tractable, models for color vision.
These studies will provide a detailed understanding of how spectral information is processed in the fly brain and
serve as a guide to investigate wavelength computations underlying color vision in the brain of more complex
animals.
色彩视觉是我们感知世界的一个重要方面,可以增强我们对复杂物体的识别
视觉场景,并允许我们分配他们的身份和质量。颜色是如何在大脑中编码的?
尽管经过几十年的研究,这个问题仍然没有答案。人们普遍认为,
神经元对光谱不同部分的波长有相反的极性反应,
色觉障碍然而,颜色对手神经元信号如何组合以产生颜色特异性
神经元,具有窄光谱敏感性,以及这些神经元如何有助于颜色感知是未知的。
分析遗传上易处理的有机体中的颜色回路对于回答这些问题至关重要。果蝇
melanogaster提供了一个强大的系统来研究紧凑的大脑如何解决颜色编码的问题,
结合对细胞类型特异性神经群体的遗传访问,明确定义的神经解剖结构,
复杂的行为此外,脊椎动物和无脊椎动物的视觉系统呈现出许多功能性特征。
相似之处事实上,这些不同的系统在解决视觉处理问题方面表现出收敛性,
激励我们的调查在一个简单的模型,与提取相关性的基本原则的意图
到哺乳动物系统。果蝇能够辨别颜色,并具有必要的硬件,
波长比较:四种类型的锥状光感受器,每种都表达独特的窄带
视紫红质具有不同的波长敏感性,范围从UV到绿色。然而,光谱信息
从这些光感受器是在大脑中处理是未知的,是这个建议的重点。我们将使用
遗传神经操作技术、体内双光子成像、电生理学和行为测定
通过定量分析和建模,以确定计算算法和神经网络
控制颜色视觉的机制。目标1将询问在一个特定的环境中存在什么样的光谱对立机制。
果蝇和确定神经元的身份和突触的相互作用在底层电路。我们将在
此外,生成工具来破坏彩色对手信号。Aim 2将使用连接组学数据,
跟踪方法来定义和功能性地表征颜色光感受器的突触后的颜色回路。我们
将研究颜色对手信号如何整合,以产生更高阶的颜色神经元。目标3将
描述这些回路中神经元的反应如何支持先天和后天的颜色引导
行为,标志着一个实验性的努力,以绘制之间的因果关系的颜色顺应性,颜色电路和颜色
感知,一种在经典的、非遗传易处理的色觉模型中一直很困难的方法。
这些研究将提供一个详细的了解光谱信息是如何处理在苍蝇的大脑,
作为一个指导,以调查波长计算基础的颜色视觉在大脑中的更复杂的
动物
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roudabeh Behnia其他文献
Roudabeh Behnia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roudabeh Behnia', 18)}}的其他基金
Neural circuit mechanisms for multisensory associative learning
多感觉联想学习的神经回路机制
- 批准号:
10524400 - 财政年份:2022
- 资助金额:
$ 40.07万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists