Robust Identification and accurate quantification of RNA transcripts on a system wide scale

在系统范围内对 RNA 转录本进行稳健识别和准确定量

基本信息

  • 批准号:
    9484279
  • 负责人:
  • 金额:
    $ 33.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary Next-generation, Illumina RNA sequencing (RNA-seq) is by far the most widely used assay for investigating animal transcriptomes, and numerous public RNA-seq data sets have been generated for various biological conditions in multiple species. However, there remain several barriers in using short RNA-seq reads to accurately identify the splicing structures and quantify the abundances of full-length RNA transcripts. In this proposal, we will develop a series of novel statistical and computational methods to improve the robustness of transcript identification and the accuracy of transcript quantification from Illumina RNA-seq data. (Aim 1) We will develop a novel screening method to construct transcript candidates by first detecting sparse splicing structures from multiple RNA-seq data sets for a given biological condition. These transcript candidates will significantly reduce the search space of downstream transcript identification methods and hence improve their precision. (Aim 2) We will develop a robust transcript identification method to identify novel transcripts in a conservative manner from RNA-seq data given existing annotations. Our method will be based on statistical model selection under the Neyman-Pearson paradigm, which will allow users to control the false positive rate of our identified novel transcripts under any given threshold with high probability. (Aim 3) We will develop an accurate transcript quantification method to effectively leverage multiple RNA-seq data sets and to simultaneously assess the data quality based on low-throughput gold standards and cross-data similarities. All of these methods will be first used to study transcripts in mouse macrophage, for which gold standard qPCR and full length cDNA sequences will be generated for training and method validation. The methods will then be more broadly tested in other biological systems where suitable gold standard data is available. Our methods and software will significantly facilitate the use of Illumina RNA-seq data for gene expression studies at the transcript level, increase reproducibility of scientific discoveries from transcriptomic studies, and improve our understanding of gene expression mechanisms in various biological conditions.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingyi Jessica Li其他文献

Jingyi Jessica Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingyi Jessica Li', 18)}}的其他基金

Statistical methods for elucidating regulatory mechanisms and functional impacts of transcriptome variation at population and single-cell scales
阐明群体和单细胞规模转录组变异的调节机制和功能影响的统计方法
  • 批准号:
    10640069
  • 财政年份:
    2021
  • 资助金额:
    $ 33.46万
  • 项目类别:
Statistical Methods for Elucidating Regulatory Mechanisms and Functional Impacts of Transcriptome Variation at Population and Single-Cell Scales
阐明群体和单细胞尺度转录组变异的调节机制和功能影响的统计方法
  • 批准号:
    10799343
  • 财政年份:
    2021
  • 资助金额:
    $ 33.46万
  • 项目类别:
Statistical methods for elucidating regulatory mechanisms and functional impacts of transcriptome variation at population and single-cell scales
阐明群体和单细胞规模转录组变异的调节机制和功能影响的统计方法
  • 批准号:
    10398166
  • 财政年份:
    2021
  • 资助金额:
    $ 33.46万
  • 项目类别:
Robust identification and accurate quantification of RNA transcripts on a system wide scale
在系统范围内对 RNA 转录本进行稳健的识别和准确的定量
  • 批准号:
    10394065
  • 财政年份:
    2016
  • 资助金额:
    $ 33.46万
  • 项目类别:
Robust Identification and accurate quantification of RNA transcripts on a system wide scale
在系统范围内对 RNA 转录本进行稳健识别和准确定量
  • 批准号:
    9974525
  • 财政年份:
    2016
  • 资助金额:
    $ 33.46万
  • 项目类别:
Robust Identification and accurate quantification of RNA transcripts on a system wide scale
在系统范围内对 RNA 转录本进行稳健识别和准确定量
  • 批准号:
    9161008
  • 财政年份:
    2016
  • 资助金额:
    $ 33.46万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了