Automatic Multimodal Affect Detection for Research and Clinical Use
用于研究和临床应用的自动多模式情感检测
基本信息
- 批准号:9534747
- 负责人:
- 金额:$ 66.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAdolescentAdultAffectAffectiveAnxietyAustraliaBehaviorBehavioralBehavioral SciencesClinicalCodeCommunitiesComputer softwareComputersCounselingDataDatabasesDetectionDevelopmentDiseaseEmotionalEmotionsEnsureEnvironmentEtiologyFaceFacial ExpressionFamilyGoalsHumanInterventionLaboratoriesLearningLinear ModelsLinguisticsMachine LearningManualsMeasurementMeasuresMental DepressionMental HealthMethodsModalityModelingMotionNational Institute of Child Health and Human DevelopmentNational Institute of Mental HealthPainParentsParticipantPatternPersonal ComputersPersuasive CommunicationProceduresProcessPsychopathologyResearchResearch PersonnelRiskRunningScientistSoftware ToolsSpeechStandardizationSubgroupSystemTestingTimeTrainingTraining and EducationTriad Acrylic ResinUnited States National Institutes of HealthValidationVerbal BehaviorVisualVoiceVoice QualityWorkbaseclinical practiceconduct problemdeep learningdesignfollow-upgazeimprovedinsightinterpersonal conflictmultimodalityprotective factorspsychological distresssocial skillstooltreatment responsetutoring
项目摘要
Project Summary
A reliable and valid automated system for quantifying human affective behavior in ecologically important
naturalistic environments would be a transformational tool for research and clinical practice. With NIMH
support (MH R01-096951), we have made fundamental progress toward this goal. In the proposed project, we
extend current capabilities in automated multimodal measurement of affective behavior (visual, acoustic, and
verbal) to develop and validate an automated system for detecting the constructs of Positive, Aggressive, and
Dysphoric behavior and component lower-level affective behaviors and verbal content. The system is based on
the manual Living in Family Environments Coding System that has yielded critical findings related to
developmental psychopathology and interpersonal processes in depression and other disorders. Two models
will be developed. One will use theoretically-derived features informed by previous research in behavioral
science and affective computing; the other empirically derived features informed by Deep Learning. The
models will be trained in three separate databases of dyadic and triadic interaction tasks from over 1300
adolescent and adult participants from the US and Australia.
Intersystem reliability with manual coding will be evaluated using k-fold cross-validation for both momentary
and session level summary scores. Differences between models and in relation to participant factors will be
tested using the general linear model. To ensure generalizability, we further will train and test between
independent databases as well. To evaluate construct validity of automated coding, we will use the ample
validity data available in the three databases to determine whether automated coding achieves the same or
better pattern of findings with respect to depression risk and development. Following procedures already in
place for sharing databases and software tools, we will design the automated systems for use by non-specialists
and make them available for research and clinical use. Achieving these goals will provide behavioral science
with powerful tools to examine basic questions in emotion, psychopathology, and interpersonal processes; and
clinicians to improve assessment and ability to track change in clinical and interpersonal functioning over time.
Relevance
For behavioral science, automated coding of affective behavior from multimodal (visual, acoustic, and verbal)
input will provide researchers with powerful tools to examine basic questions in emotion, psychopathology,
and interpersonal processes. For clinical use, automated measurement will help clinicians to assess
vulnerability and protective factors and response to treatment for a wide range of disorders. More generally,
automated measurement would contribute to advances in intelligent tutors in education, training in social
skills and persuasion in counseling, and affective computing more broadly.
项目摘要
一个可靠和有效的自动化系统,用于量化人类在生态上重要的情感行为。
自然环境将是研究和临床实践的一种变革工具。关于NIMH
支持(MH R 01 -096951),我们已经朝着这一目标取得了根本性的进展。在项目中,我们
扩展当前情感行为(视觉、听觉和听觉)自动多模式测量的能力,
口头),以开发和验证一个自动化系统,用于检测积极,积极,
焦虑行为和低层次情感行为及言语内容的组成部分。该系统基于
《生活在家庭环境中的编码系统》手册,该手册产生了与以下方面有关的重要结论:
抑郁症和其他疾病的发展精神病理学和人际关系过程。两个模型
将被开发。一个将使用理论推导出的功能,由以前的研究,在行为
科学和情感计算;深度学习提供的其他经验性特征。的
模型将在三个独立的数据库中进行训练,这些数据库包含来自1300多个任务的二元和三元交互任务
来自美国和澳大利亚的青少年和成人参与者。
手动编码的系统间可靠性将使用k折交叉验证进行评估,
和会话级汇总分数。模型之间以及与参与者因素有关的差异将
使用一般线性模型进行测试。为了确保通用性,我们将进一步在
独立的数据库。为了评估自动编码的结构有效性,我们将使用示例
三个数据库中可用的有效性数据,以确定自动编码是否达到相同或
在抑郁症风险和发展方面有更好的发现模式。以下程序已经在
作为共享数据库和软件工具的地方,我们将设计供非专业人员使用的自动化系统
并将其用于研究和临床应用。实现这些目标将提供行为科学
具有强大的工具来检查情绪,精神病理学和人际关系过程中的基本问题;
临床医生改善评估和能力,以跟踪临床和人际功能随时间的变化。
相关性
对于行为科学,从多模态(视觉,听觉和言语)情感行为的自动编码
输入将为研究人员提供强大的工具,以检查情绪,精神病理学,
和人际交往过程。对于临床使用,自动化测量将帮助临床医生评估
脆弱性和保护因素以及对各种疾病的治疗反应。更一般地说,
自动化测量将有助于在教育,社会培训,
技能和说服力,以及更广泛的情感计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY F COHN其他文献
JEFFREY F COHN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY F COHN', 18)}}的其他基金
Modeling the Dynamics of Early Communication and Development
模拟早期沟通和发展的动态
- 批准号:
9124921 - 财政年份:2013
- 资助金额:
$ 66.35万 - 项目类别:
Modeling the Dynamics of Early Communication and Development
模拟早期沟通和发展的动态
- 批准号:
8711519 - 财政年份:2013
- 资助金额:
$ 66.35万 - 项目类别:
Modeling the Dynamics of Early Communication and Development
模拟早期沟通和发展的动态
- 批准号:
8452565 - 财政年份:2013
- 资助金额:
$ 66.35万 - 项目类别:
Automated Facial Expression Analysis for Research and Clinical Use
用于研究和临床用途的自动面部表情分析
- 批准号:
8464280 - 财政年份:2012
- 资助金额:
$ 66.35万 - 项目类别:
Automated Facial Expression Analysis for Research and Clinical Use
用于研究和临床用途的自动面部表情分析
- 批准号:
8816133 - 财政年份:2012
- 资助金额:
$ 66.35万 - 项目类别:
Automated Facial Expression Analysis for Research and Clinical Use
用于研究和临床用途的自动面部表情分析
- 批准号:
8633060 - 财政年份:2012
- 资助金额:
$ 66.35万 - 项目类别:
Automatic Multimodal Affect Detection for Research and Clinical Use
用于研究和临床应用的自动多模式情感检测
- 批准号:
9912818 - 财政年份:2012
- 资助金额:
$ 66.35万 - 项目类别:
Automatic Multimodal Affect Detection for Research and Clinical Use
用于研究和临床应用的自动多模式情感检测
- 批准号:
10162316 - 财政年份:2012
- 资助金额:
$ 66.35万 - 项目类别:
Automated Facial Expression Analysis for Research and Clinical Use
用于研究和临床用途的自动面部表情分析
- 批准号:
8270831 - 财政年份:2012
- 资助金额:
$ 66.35万 - 项目类别:
FACIAL EXPRESSION ANALYSIS BY COMPUTER IMAGE PROCESSING
通过计算机图像处理进行面部表情分析
- 批准号:
2250697 - 财政年份:1995
- 资助金额:
$ 66.35万 - 项目类别:
相似海外基金
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 66.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
- 批准号:
10755168 - 财政年份:2023
- 资助金额:
$ 66.35万 - 项目类别:
A Priority Setting Partnership to Establish a Patient, Caregiver, and Clinician-identified Research Agenda for Adolescent and Young Adult Cancer in Canada
建立优先合作伙伴关系,以建立患者、护理人员和临床医生确定的加拿大青少年和年轻人癌症研究议程
- 批准号:
480840 - 财政年份:2023
- 资助金额:
$ 66.35万 - 项目类别:
Miscellaneous Programs
Incidence and Time on Onset of Cardiovascular Risk Factors and Cardiovascular Disease in Adult Survivors of Adolescent and Young Adult Cancer and Association with Exercise
青少年和青年癌症成年幸存者心血管危险因素和心血管疾病的发病率和时间以及与运动的关系
- 批准号:
10678157 - 财政年份:2023
- 资助金额:
$ 66.35万 - 项目类别:
Fertility experiences among ethnically diverse adolescent and young adult cancer survivors: A population-based study
不同种族青少年和年轻成年癌症幸存者的生育经历:一项基于人群的研究
- 批准号:
10744412 - 财政年份:2023
- 资助金额:
$ 66.35万 - 项目类别:
Treatment development for refractory leukemia using childhood/adolescent, and young adult leukemia biobank
利用儿童/青少年和青年白血病生物库开发难治性白血病的治疗方法
- 批准号:
23K07305 - 财政年份:2023
- 资助金额:
$ 66.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular design of Two-Way Player CAR-T cells to overcome disease/antigen heterogeneity of childhood, adolescent, and young adult cancers
双向 CAR-T 细胞的分子设计,以克服儿童、青少年和年轻成人癌症的疾病/抗原异质性
- 批准号:
23H02874 - 财政年份:2023
- 资助金额:
$ 66.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effects of adolescent social isolation on adult decision making and corticostriatal circuitry
青少年社会隔离对成人决策和皮质纹状体回路的影响
- 批准号:
10756652 - 财政年份:2023
- 资助金额:
$ 66.35万 - 项目类别:
Adolescent trauma produces enduring disruptions in sleep architecture that lead to increased risk for adult mental illness
青少年创伤会对睡眠结构产生持久的破坏,从而导致成人精神疾病的风险增加
- 批准号:
10730872 - 财政年份:2023
- 资助金额:
$ 66.35万 - 项目类别:
Using Tailored mHealth Strategies to Promote Weight Management among Adolescent and Young Adult Cancer Survivors
使用量身定制的移动健康策略促进青少年和年轻癌症幸存者的体重管理
- 批准号:
10650648 - 财政年份:2023
- 资助金额:
$ 66.35万 - 项目类别: