Mapping of spatiotemporal code features to neural and perceptual spaces

将时空代码特征映射到神经和感知空间

基本信息

项目摘要

Project Summary Two of the most fundamental questions of sensory neuroscience are: 1) how is stimulus information represented by the activity of populations of neurons at different levels of information processing? and 2) what features of this activity are read at the next levels of neural processing to guide behavior? The first question has been the subject of a large body of work across different sensory stimuli. To answer the second question, one needs to establish a causal link between neuronal activity and behavior. In many systems sensory information is represented by complex spatiotemporal patterns of neuronal activity. Novel recording and stimulating technology will soon allow the precise temporal control of hundreds and thousands of individual neurons, however, conceptual approaches of finding relevance of different spatiotemporal features of neural code still lag behind. To develop a new approach we chose the mammalian olfaction as a model system, because odor stimuli evoke complex patterns of glomerular activity with spatial and temporal scales fully compatible with existing imaging and pattern stimulation technologies. In addition, the accessibility of the cells in the next processing level, the mitral/tufted cells which get input from olfactory glomeruli and transmit the signal to higher brain areas, allows a systematic study of encoding different features of neural activity with known behavioral relevance. We propose a novel approach to map spatiotemporal code features to neural and perceptual spaces. First, we substitute sensory-driven neural activation by artificial and fully parametrized optogenetic pattern stimulation. By varying the parameters of such stimulation and recording the behavioral outcomes of the stimulation, we will build a detailed empirically-validated mathematical model of the relevance of different features of neural activity. Then we will test this model for natural odor stimuli, and explore how these features are processed and encoded by the next level of processing. Successful execution of the project will produce the first (to our knowledge) causally validated model for behavioral relevance of a distributed neural code. It will shine light on long standing questions in olfactory processing, approaching the olfactory code from the perspective of its behavioral relevance. The proposed approach can be further applied to different neural systems using multi-neuronal recording and stimulation techniques.
项目摘要 感觉神经科学的两个最基本的问题是:1)刺激信息是如何产生的 是由不同层次的神经元的活动来代表的?(2)什么 这种活动的特征在下一级神经处理中被读取以指导行为?第一个问题 一直是大量研究的主题,涉及不同的感官刺激。回答第二个问题, 我们需要在神经元活动和行为之间建立因果关系。在许多感官系统中, 信息由神经元活动的复杂时空模式表示。小说录音和 刺激技术将很快允许精确的时间控制成百上千的个人 神经元,然而,发现神经元的不同时空特征的相关性的概念方法, 代码仍然落后。 为了开发一种新的方法,我们选择哺乳动物嗅觉作为模型系统,因为气味刺激引起 肾小球活动的复杂模式,空间和时间尺度与现有成像完全兼容 和模式刺激技术。此外,单元格在下一个处理级别( 僧帽细胞/簇状细胞从嗅球获得输入,并将信号传递到更高的大脑区域, 一个系统的研究与已知的行为相关性的神经活动的编码不同的功能。 我们提出了一种新的方法来映射时空代码功能的神经和感知空间。一是 通过人工和完全参数化光遗传学模式刺激替代感觉驱动的神经激活。 通过改变这种刺激的参数并记录刺激的行为结果,我们 将建立一个详细的实验验证的数学模型的相关性的不同特征的神经 活动然后,我们将测试这个模型的自然气味刺激,并探讨如何处理这些功能 并由下一级处理进行编码。 该项目的成功执行将产生第一个(据我们所知)因果验证模型, 分布式神经代码的行为相关性。它将照亮长期存在的问题,在嗅觉 处理,从行为相关性的角度接近嗅觉代码。拟议 该方法可以进一步应用于使用多神经元记录和刺激的不同神经系统 技术.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefano VT Panzeri其他文献

Stefano VT Panzeri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefano VT Panzeri', 18)}}的其他基金

Mapping of spatiotemporal code features to neural and perceptual spaces
将时空代码特征映射到神经和感知空间
  • 批准号:
    10437652
  • 财政年份:
    2018
  • 资助金额:
    $ 48.58万
  • 项目类别:
Mapping of spatiotemporal code features to neural and perceptual spaces
将时空代码特征映射到神经和感知空间
  • 批准号:
    10202770
  • 财政年份:
    2018
  • 资助金额:
    $ 48.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了