A TOF, DOI, MRI compatible PET detector to support sub-millimeter neuroPET imaging
兼容 TOF、DOI、MRI 的 PET 探测器,支持亚毫米神经 PET 成像
基本信息
- 批准号:9791188
- 负责人:
- 金额:$ 53.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-25 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAlgorithmsAreaBenchmarkingBrainBrain imagingClinicalCrystallizationDataDetectionDevelopmentDevicesDimensionsDiseaseElectronicsElementsEvaluationEventFunctional ImagingGeometryGoalsGuidelinesHumanImageImaging technologyIndividualInvestigationLaboratory ResearchLeadLengthMachine LearningMagnetic Resonance ImagingMathematicsMeasurementMeasuresMethodsModelingMonte Carlo MethodMultimodal ImagingNeurosciencesOpticsOutcomePerformancePhysiologic pulsePositioning AttributePositron-Emission TomographyPropertyResearchResearch PersonnelResolutionRoleRunningSideSiliconSurfaceSystemTechnologyTestingTimeUnited States National Institutes of HealthUniversitiesVendorWashingtonWorkbasebrain researchdesigndetectordigitalimaging detectorimaging systemimprovedinnovative neurotechnologiesinnovative technologieslearning strategyneuroimagingnext generationnoveloperationprototypetemporal measurementtool
项目摘要
Abstract
The overall goal of this research is to develop next generation positron emission tomography (PET) detector
technology to support non-invasive, quantitative brain imaging at spatial and temporal resolutions currently not
achievable with human neuro-PET systems. The developed PET detector technology will also be compatible
with operation in an MRI system. The proposed research is targeted to the NIH Brain Research through
Advancing Innovative Neurotechnologies (BRAIN) initiative. Human brain imaging with PET/MRI will be an
essential tool in neuroscience studies to "Develop innovative technologies to understand the human brain and
treat its disorders; create and support integrated brain research networks." The key advancement that we
introduce is a PET detector with <100 psec time-of-flight (TOF) PET coincidence resolution, <2 mm continuous
depth of interaction (DOI) positioning and intrinsic detector spatial resolution to support <1 mm PET image
resolution throughout the system imaging field of view (FOV). Detector modules have been designed that
individually achieve these performance metrics; however, no detector module has been designed that supports
all of them. To make disruptive advancements in neuro-imaging using PET, one must push the image spatial
resolution (i.e., currently 2-3 mm image resolution) as well as coincidence timing resolution and also be MRI
compatible. The impact of this project is that we will advance the state of the art in all of these critical
performance areas. We will achieve these goals by first understanding the role that different PET detector
performance parameters have on task-based figures of merit for neuroPET imaging. We will investigate how
both TOF and image resolution impact figure of merit performance for estimation, detection and
characterization imaging tasks. Monte Carlo simulation will be used along with both object-based (i.e.,
mathematical) and anthropomorphic digital phantoms. Next we will optimize SiPM device selection, electronics
and detector geometry for <100 psec TOF coincidence timing, 1 mm intrinsic spatial resolution and <2 mm DOI
positioning resolution. We will build and characterize a prototype PET detector module utilizing a novel dual-
sided slat crystal detector design. To advance coincidence timing performance we will investigate the use of
machine learning to estimate the arrival time of detected events. Finally, we will optimize the detector design
for MRI compatibility. We will fully test and characterize performance of our prototype detector on the benchtop
and in a MRI scanner while running clinical MRI pulse sequences. At the end of this developmental project we
will be in position to build a state of the art, MRI compatible, TOF, DOI PET imaging system.
抽象的
这项研究的总体目标是开发下一代正电子发射断层扫描(PET)检测器
在空间和时间分辨率上支持非侵入性,定量大脑成像的技术目前尚未
可以通过人类神经-PET系统实现。开发的宠物探测器技术也将兼容
在MRI系统中操作。拟议的研究针对NIH大脑研究
推进创新的神经技术(大脑)倡议。用宠物/MRI成像的人脑成像将是
神经科学研究的基本工具,以“开发创新技术来了解人脑和
治疗其疾病;建立和支持综合的大脑研究网络。”我们的关键进步
介绍是一个宠物探测器,飞行时间<100(TOF)宠物巧合分辨率,<2 mm连续
相互作用的深度(DOI)定位和内在检测器空间分辨率支持<1 mm PET图像
整个系统成像视图(FOV)的分辨率。探测器模块已经设计了
单独实现这些性能指标;但是,尚未设计任何探测器模块来支持
所有人。要使用PET在神经形象中取得破坏性的进步,必须推动图像空间
分辨率(即当前2-3 mm图像分辨率)以及巧合的正时分辨率,也是MRI
兼容的。该项目的影响是,我们将在所有这些关键
性能领域。我们将首先了解不同宠物探测器的作用来实现这些目标
性能参数具有基于任务的神经成像功能的功绩。我们将调查如何
TOF和图像分辨率的效果绩效的影响图,用于估计,检测和
表征成像任务。蒙特卡洛模拟将与两个基于对象的模拟一起使用(即
数学)和拟人化数字幻影。接下来,我们将优化SIPM设备选择,电子设备
<100 psec TOF重合时机,1 mm内在空间分辨率和<2 mm doi的探测器几何形状
定位分辨率。我们将利用新颖的双重培养宠物探测器模块来构建和表征原型的宠物探测器模块
侧面SLAT晶体检测器设计。为了提高巧合的时机性能,我们将调查使用
机器学习以估计被检测到的事件的到达时间。最后,我们将优化检测器设计
用于MRI兼容性。我们将完全测试和表征台式上原型检测器的性能
在运行临床MRI脉冲序列时,在MRI扫描仪中。在这个发展项目的结尾,我们
将可以建立最先进的状态,MRI兼容,TOF,DOI PET成像系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergei Dolinsky其他文献
Sergei Dolinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别: