Multimodal brain-connectivity biomarkers for profiling heterogeneity in early psychosis
用于分析早期精神病异质性的多模式大脑连接生物标志物
基本信息
- 批准号:9789955
- 负责人:
- 金额:$ 22.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAxonBiologicalBiological MarkersBrainBrain regionCategoriesClinicalCognitionCognitiveComplexDataData SetDependenceDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDiffusion Magnetic Resonance ImagingDimensionsDiseaseEarly InterventionEnsureEquationFiberFingerprintFrequenciesFunctional Magnetic Resonance ImagingFunctional disorderGrantHeterogeneityHumanImageJointsKnowledgeLabelMagnetic Resonance ImagingMeasuresMental disordersMicroscopicModelingMultimodal ImagingNational Institute of Mental HealthNetwork-basedPathologic ProcessesPathway interactionsPatientsPopulationPrincipal Component AnalysisPsychophysiologyPsychotic DisordersReproducibility of ResultsResearch Domain CriteriaRestStructureSymptomsSyndromeSystemTechniquesTestingTissuesValidationWaterbasebrain abnormalitiescausal modelclinical diagnosticsconnectomedensitydesigneffective therapyfirst episode schizophreniahuman subjectindividual patientinnovationmultimodalityneuroimagingnovelnovel strategiespersonalized medicinetooltractographywater diffusion
项目摘要
Project Summary
Title: Multimodal brain-connectivity biomarkers for profiling heterogeneity in early psychosis
Psychotic disorders involve dysfunction in complex structural and functional brain connectivity. But the current
clinical approach for diagnosing psychotic disorders using the Diagnostic and Statistical Manual of Mental
Illness (DSM) usually fails to categorize the diseases based on biological abnormalities. Identifying the specific
abnormal brain system of the individual patient, especially for patients at the early psychosis (EP) stage before
irreversible brain alterations take place, is key to develop more effective early intervention approaches. For this
purpose, we propose to develop an innovative data-driven approach to characterize the heterogeneity of brain
abnormalities in early psychosis patients across different clinical diagnostic categories. We will develop and
apply our approach to two datasets of subjects from the “Human Connectome Project for Early Psychosis”
where high-quality magnetic resonance imaging (MRI) data and clinical measures were collected from 320
patients and 80 controls and the CIDAR project with 46 patients and 37 controls. To characterize psychosis-
related brain connectivity, we propose a novel approach to integrate our diffusion MRI measures on
microscopic structures, such as axon density, and our resting-state functional MRI measure on the information
flow through the axonal bundles. Then we will apply a systematically designed set of steps, including selecting
brain connectivity features, canonical correlation analysis, and cross-validation, to define several novel EP-
networks based on multimodal brain connectivity markers. Our approach will provide novel brain-network
profiles to understand patient-specific abnormalities. Results from this project could provide important brain
targets for developing more effective personalized treatment approaches.
项目摘要
标题:用于分析早期精神病异质性的多模式大脑连接生物标志物
精神障碍涉及复杂的结构和功能脑连接的功能障碍。但目前的
使用精神疾病诊断和统计手册诊断精神障碍的临床方法
疾病诊断与统计手册(DSM)通常未能根据生物异常对疾病进行分类。识别特定
个别患者的脑系统异常,特别是对于之前处于早期精神病(EP)阶段的患者
不可逆转的大脑改变发生的关键是开发更有效的早期干预方法。为此
目的,我们提出了一种创新的数据驱动的方法来表征大脑的异质性,
不同临床诊断类别的早期精神病患者的异常。创新和
将我们的方法应用于“人类早期精神病连接组项目”的两个受试者数据集
其中高质量的磁共振成像(MRI)数据和临床措施收集了320
患者和80名对照以及CIDAR项目的46名患者和37名对照。精神病的特征-
相关的大脑连接,我们提出了一种新的方法来整合我们的扩散MRI措施,
微观结构,如轴突密度,和我们的静息态功能磁共振成像测量的信息
流经轴突束然后,我们将应用一套系统设计的步骤,包括选择
脑连接特征,典型相关分析和交叉验证,以定义几个新的EP-
基于多模式大脑连接标记的网络。我们的方法将提供新颖的大脑网络
以了解患者特异性异常。该项目的成果可以提供重要的大脑
开发更有效的个性化治疗方法的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lipeng Ning其他文献
Lipeng Ning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lipeng Ning', 18)}}的其他基金
Real-time visualization and precision targeting in transcranial magnetic stimulation
经颅磁刺激的实时可视化和精确定位
- 批准号:
10195450 - 财政年份:2021
- 资助金额:
$ 22.38万 - 项目类别:
Real-time visualization and precision targeting in transcranial magnetic stimulation
经颅磁刺激的实时可视化和精确定位
- 批准号:
10330032 - 财政年份:2021
- 资助金额:
$ 22.38万 - 项目类别:
Joint structural-and-functional MRI analysis for predicting electroconvulsive therapy response in major depressive disorder
联合结构和功能 MRI 分析预测重度抑郁症的电休克治疗反应
- 批准号:
10471260 - 财政年份:2019
- 资助金额:
$ 22.38万 - 项目类别:
Joint structural-and-functional MRI analysis for predicting electroconvulsive therapy response in major depressive disorder
联合结构和功能 MRI 分析预测重度抑郁症的电休克治疗反应
- 批准号:
10225993 - 财政年份:2019
- 资助金额:
$ 22.38万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.38万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.38万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.38万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.38万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.38万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.38万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.38万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.38万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.38万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.38万 - 项目类别:
Continuing Grant