Nonlinear Causal Analysis of Neural Signals

神经信号的非线性因果分析

基本信息

项目摘要

Abstract The goal of this research is to develop new multivariate data analysis techniques for neural recordings that reveal causal dependencies between recording sites. Delay Differential Analysis (DDA) is a robust and efficient nonlinear time-domain algorithm for time series data that complements linear spectral methods. DDA combines delay and differential embeddings in nonlinear dynamical systems to discriminate between different normal and abnormal cortical states with high temporal resolution and insensitivity to artifacts. The proposed research generalizes Granger causality for linear systems by developing a cross-dynamical version of DDA (CD-DDA) to measure the flow of information between brain areas. This is an important problem for which existing approaches are inadequate. CD-DDA will be applied first to simulations of cortical network models with Hodgkin-Huxley neurons, where causal influence can be controlled and the efficacy of CD-DDA can be validated. In collaboration with Sydney Cash at the Massachusetts General Hospital, CD-DDA will then be applied to electrocorticography (ECoG) recordings from human epilepsy patients with implanted grids of electrodes. We previously analyzed these recordings with DDA, which revealed differences between cortical states leading up to seizures, abrupt shifts at the onsets of the seizures and altered cortical states long after the seizures. These ECoG recordings will be re-analyzed using CD-DDA, which should reveal how communication between cortical areas reconfigures before seizures. We also have access to many hours of interictal recordings, which will give us the opportunity to establish a baseline for how information flows in cortical circuits during more normal cortical activity. We will make the software for all of the DDA algorithms we have developed openly available. These new algorithms will have many other applications for analyzing neural signals online in other brain areas and from other neural time series, including calcium fluorescence imaging from single cells, dendrites and synapses and recordings using voltage-sensitive dyes.
摘要 本研究的目标是开发用于神经记录的新的多元数据分析技术, 揭示记录位点之间的因果依赖关系。延迟微分分析(DDA)是一种稳健而有效的 时间序列数据的非线性时域算法,补充线性谱方法。DDA组合 延迟和微分嵌入在非线性动力系统,以区分不同的正常和 异常皮质状态,具有高时间分辨率和对伪影不敏感。拟议研究 通过开发DDA的交叉动力学版本(CD-DDA),将线性系统的格兰杰因果关系推广到 测量大脑区域之间的信息流。这是一个重要的问题,现有的方法 是不够的。CD-DDA将首先应用于Hodgkin-Huxley皮层网络模型的模拟 神经元,其中因果关系可以控制,CD-DDA的有效性可以得到验证。合作 与马萨诸塞州总医院的Sydney Cash一起,CD-DDA将被应用于皮层电描记术 这是来自植入电极网格的人类癫痫患者的皮层脑电图(ECoG)记录。我们之前分析过 这些记录与DDA,揭示了导致癫痫发作的皮质状态之间的差异,突然 在癫痫发作时发生变化,并在癫痫发作后很长时间内改变皮质状态。这些皮层脑电图记录 将使用CD-DDA进行重新分析,这将揭示皮层区域之间的通信是如何相互作用的。 在癫痫发作之前。我们还能拿到几个小时的发作间期录音,这让我们有机会 以建立一个基线,了解在更正常的皮层活动中,信息如何在皮层回路中传播。我们将 使我们开发的所有DDA算法的软件公开可用。这些新算法将 还有许多其他的应用程序,用于分析其他大脑区域和其他神经时间的在线神经信号 系列,包括单细胞、树突和突触的钙荧光成像,以及使用 电压敏感染料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TERRENCE J SEJNOWSKI其他文献

TERRENCE J SEJNOWSKI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TERRENCE J SEJNOWSKI', 18)}}的其他基金

DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
  • 批准号:
    10643212
  • 财政年份:
    2023
  • 资助金额:
    $ 34.71万
  • 项目类别:
Multiscale modeling and large-scale recordings of trauma-induced epileptogenesis
创伤诱发癫痫发生的多尺度建模和大规模记录
  • 批准号:
    10229375
  • 财政年份:
    2018
  • 资助金额:
    $ 34.71万
  • 项目类别:
Multiscale modeling and large-scale recordings of trauma-induced epileptogenesis
创伤诱发癫痫发生的多尺度建模和大规模记录
  • 批准号:
    9789979
  • 财政年份:
    2018
  • 资助金额:
    $ 34.71万
  • 项目类别:
Multiscale modeling and large-scale recordings of trauma-induced epileptogenesis
创伤诱发癫痫发生的多尺度建模和大规模记录
  • 批准号:
    10468022
  • 财政年份:
    2018
  • 资助金额:
    $ 34.71万
  • 项目类别:
Multiscale modeling and large-scale recordings of trauma-induced epileptogenesis
创伤诱发癫痫发生的多尺度建模和大规模记录
  • 批准号:
    9597206
  • 财政年份:
    2018
  • 资助金额:
    $ 34.71万
  • 项目类别:
Cell Modeling
细胞建模
  • 批准号:
    10228748
  • 财政年份:
    2012
  • 资助金额:
    $ 34.71万
  • 项目类别:
SIMULATION NEUROTRANSMITTER DIFFUSION IN CEREBELLAR GLOMERULI
模拟小脑肾小球中的神经递质扩散
  • 批准号:
    7956214
  • 财政年份:
    2009
  • 资助金额:
    $ 34.71万
  • 项目类别:
Intrinsic and synaptic mechanisms of epileptogenesis triggered by cortical trauma
皮质创伤引发癫痫发生的内在机制和突触机制
  • 批准号:
    8318223
  • 财政年份:
    2009
  • 资助金额:
    $ 34.71万
  • 项目类别:
Intrinsic and synaptic mechanisms of epileptogenesis triggered by cortical trauma
皮质创伤引发癫痫发生的内在机制和突触机制
  • 批准号:
    8144893
  • 财政年份:
    2009
  • 资助金额:
    $ 34.71万
  • 项目类别:
Intrinsic and synaptic mechanisms of epileptogenesis triggered by cortical trauma
皮质创伤引发癫痫发生的内在机制和突触机制
  • 批准号:
    7654250
  • 财政年份:
    2009
  • 资助金额:
    $ 34.71万
  • 项目类别:

相似海外基金

AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
  • 批准号:
    22K09863
  • 财政年份:
    2022
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
  • 批准号:
    0218568
  • 财政年份:
    2002
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
  • 批准号:
    9404947
  • 财政年份:
    1994
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了