Nonlinear Causal Analysis of Neural Signals
神经信号的非线性因果分析
基本信息
- 批准号:9789882
- 负责人:
- 金额:$ 34.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-22 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmic AnalysisAlgorithmsAreaBrainCalciumCellsClinical assessmentsCollaborationsCommunicationComplementComputer softwareCouplingDataData AnalysesData SetDendritesDependenceDiagnosisElectrocorticogramElectrodesEpilepsyEpileptogenesisEtiologyFrequenciesGeneral HospitalsGoalsHodgkin-Huxley modelHourHumanImplantMassachusettsMeasurementMeasuresMethodsModelingModificationMorphologic artifactsNeuronsNon-linear ModelsNonlinear DynamicsPatientsPolynomial ModelsPropertyResearchResolutionSamplingSeizuresSeriesSiteSleepStructureSynapsesSystemTechniquesTestingTimeTime Series Analysisanalytical methodawakebasedynamic systemfluorescence imaginggraphical user interfaceimprovedinsightnetwork architecturenetwork modelsneurotransmissionnovel strategiesopen sourceprogramsrelating to nervous systemsimulationtemporal measurementvoltage sensitive dye
项目摘要
Abstract
The goal of this research is to develop new multivariate data analysis techniques for neural recordings that
reveal causal dependencies between recording sites. Delay Differential Analysis (DDA) is a robust and efficient
nonlinear time-domain algorithm for time series data that complements linear spectral methods. DDA combines
delay and differential embeddings in nonlinear dynamical systems to discriminate between different normal and
abnormal cortical states with high temporal resolution and insensitivity to artifacts. The proposed research
generalizes Granger causality for linear systems by developing a cross-dynamical version of DDA (CD-DDA) to
measure the flow of information between brain areas. This is an important problem for which existing approaches
are inadequate. CD-DDA will be applied first to simulations of cortical network models with Hodgkin-Huxley
neurons, where causal influence can be controlled and the efficacy of CD-DDA can be validated. In collaboration
with Sydney Cash at the Massachusetts General Hospital, CD-DDA will then be applied to electrocorticography
(ECoG) recordings from human epilepsy patients with implanted grids of electrodes. We previously analyzed
these recordings with DDA, which revealed differences between cortical states leading up to seizures, abrupt
shifts at the onsets of the seizures and altered cortical states long after the seizures. These ECoG recordings
will be re-analyzed using CD-DDA, which should reveal how communication between cortical areas reconfigures
before seizures. We also have access to many hours of interictal recordings, which will give us the opportunity
to establish a baseline for how information flows in cortical circuits during more normal cortical activity. We will
make the software for all of the DDA algorithms we have developed openly available. These new algorithms will
have many other applications for analyzing neural signals online in other brain areas and from other neural time
series, including calcium fluorescence imaging from single cells, dendrites and synapses and recordings using
voltage-sensitive dyes.
摘要
这项研究的目标是开发用于神经记录的新的多变量数据分析技术
揭示记录站点之间的因果关系。时延差分分析是一种稳健而有效的fi
时间序列数据的非线性时域算法,它是线性谱方法的补充。DDA联合收割机
非线性动力系统中区分正态与非正态的时滞与微分嵌入
异常的皮质状态,时间分辨率高,对伪影不敏感。拟议的研究
通过开发交叉动力版本的DDA(CD-DDA)来推广线性系统的Granger因果关系
测量大脑区域之间信息的flow。这是一个重要的问题,现有的方法
是不够的。CD-dda将被用于用fi-Huxley模拟大脑皮层网络模型
神经元,在fl的原因是可以控制的,并可以验证CD-fi的影响。在协作中
随着西德尼·卡什在马萨诸塞州总医院的工作,CD-DDA将被应用于皮层脑电图术
(ECOG)植入电极栅格的人类癫痫患者的记录。我们之前分析过
这些DDA的记录,揭示了导致癫痫发作的皮质状态之间的差异,突然
癫痫发作开始时的变化和癫痫发作后很久的皮质状态改变。这些ECoG记录
将使用CD-DDA重新分析,这将揭示大脑皮层区域之间的通信是如何重新检测fi的
在癫痫发作前。我们还可以接触到长达数小时的间歇期录音,这将使我们有机会
为在更正常的大脑皮层活动期间,信息fl如何在大脑皮层回路中传播建立一个基线。我们会
使我们开发的所有DDA算法的软件都公开可用。这些新算法将
有许多其他应用程序,用于在线分析其他大脑区域和来自其他神经时间的神经信号
系列,包括单细胞、树突和突触的钙fl荧光成像和使用
电压敏感染料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TERRENCE J SEJNOWSKI其他文献
TERRENCE J SEJNOWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TERRENCE J SEJNOWSKI', 18)}}的其他基金
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
- 批准号:
10643212 - 财政年份:2023
- 资助金额:
$ 34.71万 - 项目类别:
Multiscale modeling and large-scale recordings of trauma-induced epileptogenesis
创伤诱发癫痫发生的多尺度建模和大规模记录
- 批准号:
9789979 - 财政年份:2018
- 资助金额:
$ 34.71万 - 项目类别:
Multiscale modeling and large-scale recordings of trauma-induced epileptogenesis
创伤诱发癫痫发生的多尺度建模和大规模记录
- 批准号:
10229375 - 财政年份:2018
- 资助金额:
$ 34.71万 - 项目类别:
Multiscale modeling and large-scale recordings of trauma-induced epileptogenesis
创伤诱发癫痫发生的多尺度建模和大规模记录
- 批准号:
10468022 - 财政年份:2018
- 资助金额:
$ 34.71万 - 项目类别:
Multiscale modeling and large-scale recordings of trauma-induced epileptogenesis
创伤诱发癫痫发生的多尺度建模和大规模记录
- 批准号:
9597206 - 财政年份:2018
- 资助金额:
$ 34.71万 - 项目类别:
SIMULATION NEUROTRANSMITTER DIFFUSION IN CEREBELLAR GLOMERULI
模拟小脑肾小球中的神经递质扩散
- 批准号:
7956214 - 财政年份:2009
- 资助金额:
$ 34.71万 - 项目类别:
Intrinsic and synaptic mechanisms of epileptogenesis triggered by cortical trauma
皮质创伤引发癫痫发生的内在机制和突触机制
- 批准号:
8144893 - 财政年份:2009
- 资助金额:
$ 34.71万 - 项目类别:
Intrinsic and synaptic mechanisms of epileptogenesis triggered by cortical trauma
皮质创伤引发癫痫发生的内在机制和突触机制
- 批准号:
8318223 - 财政年份:2009
- 资助金额:
$ 34.71万 - 项目类别:
Intrinsic and synaptic mechanisms of epileptogenesis triggered by cortical trauma
皮质创伤引发癫痫发生的内在机制和突触机制
- 批准号:
7654250 - 财政年份:2009
- 资助金额:
$ 34.71万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 34.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 34.71万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 34.71万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 34.71万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 34.71万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 34.71万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 34.71万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 34.71万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 34.71万 - 项目类别:
Standard Grant














{{item.name}}会员




