Comprehensive and multi-resolution mapping of cell morphology and wiring through X-ray holographic nano-tomography
通过 X 射线全息纳米断层扫描对细胞形态和布线进行全面的多分辨率绘图
基本信息
- 批准号:10376584
- 负责人:
- 金额:$ 188.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2024-09-16
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnatomyBrainCellsCellular MorphologyCerebellar CortexCerebellar NucleiCerebellumCollaborationsComplexComputer ModelsContrast MediaDataData SetElectron MicroscopyElementsEngineeringEuropeanFoundationsGoalsImageLabelLinkMachine LearningMapsMethodsModelingMolecular GeneticsMorphologyMusNeurodegenerative DisordersNeuronsNeurosciencesOutputPhysiologyPreparationProcessReporterResearchResolutionResourcesRoentgen RaysRoleSamplingScanningScientistSocial BehaviorSpecimenStructureSulfurSynapsesSynchrotronsSystemTechniquesTherapeuticX ray microscopybasecell typecellular imagingconnectomedata acquisitiondeep learningeffective therapyflexibilityimaging modalityimprovedmicroscopic imagingmotor controlnanonervous system disordernetwork modelsneural circuitneural networkneuronal circuitrynext generationnovel strategiesreconstructionrelating to nervous systemstability testingtomographytooltreatment strategy
项目摘要
Project Summary / Abstract
A fundamental goal in neuroscience is understanding how information is processed in neuronal circuits.
However, the immense complexity of most brain networks has been a significant barrier to progress. Neurons
are a primary computational component of the brain, yet we do not have a comprehensive list of their types for
even the simplest mammalian neuronal circuit. Moreover, a neuron’s function is dependent on how it is
connected, yet mammalian neuronal networks consist of billions of cells with trillions of connections. How do
we approach such a complex computational system? Recent advances in X-ray microscopy, electron
microscopy, and molecular genetic tools have allowed us to begin detailed mapping of neural network anatomy
and connectivity. The cerebellum is an excellent system to scale and validate a new platform to systematically
reverse engineer a functional neural circuit that is involved in motor control and social behavior. Its basic
structure is well ordered, relatively simple and sufficiently studied to have inspired computational models that
capture aspects of cerebellar function. However, even the most advanced models are limited by an incomplete
characterization of the cell types and their connectivity within the cerebellum. Here, we propose to scale and
validate our next-generation X-ray holographic nanotomography (XNH) platform and provide a comprehensive
characterization of cerebellar circuitry. We will use tools recently established in our labs to disentangle a circuit
that offers the advantages of relative simplicity and a strong starting foundation. These studies will allow us to
understand principles of cerebellar circuit and cell type organization, and may help us determine the role of
specific cell types in neurodegenerative disorders.
项目总结/摘要
神经科学的一个基本目标是了解信息如何在神经元回路中处理。
然而,大多数大脑网络的巨大复杂性一直是进步的重大障碍。神经元
是大脑的主要计算组件,但我们没有一个完整的列表,
甚至是最简单的哺乳动物神经回路。此外,神经元的功能取决于它是如何工作的。
然而,哺乳动物的神经网络是由数十亿个细胞和数万亿个连接组成的。怎么
我们如何处理这样一个复杂的计算系统?X射线显微镜、电子显微镜
显微镜和分子遗传学工具使我们能够开始详细绘制神经网络解剖图
和连通性。小脑是一个很好的系统,可以扩展和验证一个新的平台,
逆向工程一个功能性神经回路,涉及运动控制和社会行为。其基本
结构是有序的,相对简单,经过充分的研究,激发了计算模型,
捕捉小脑功能的各个方面然而,即使是最先进的模型也受到不完整的
表征小脑内的细胞类型及其连接。在这里,我们建议扩大规模,
验证我们的下一代X射线全息纳米层析成像(XNH)平台,并提供全面的
小脑回路的特征。我们将使用实验室中最近建立的工具来解开电路
这提供了相对简单和坚实的起始基础的优点。这些研究将使我们能够
了解小脑回路和细胞类型组织的原理,并可能帮助我们确定
神经退行性疾病中的特定细胞类型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Teodora JOITA PACUREANU其他文献
Alexandra Teodora JOITA PACUREANU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 188.93万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 188.93万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 188.93万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 188.93万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 188.93万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 188.93万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 188.93万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 188.93万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 188.93万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 188.93万 - 项目类别:
Continuing Grant