TECH Core

技术核心

基本信息

  • 批准号:
    10374452
  • 负责人:
  • 金额:
    $ 41.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-09 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

This TECH core of the U54 Center for Multiparametric Imaging of Tumor Immune Microenvironments (C-MITIE) will develop an integrated toolkit of advanced imaging and data analysis to power quantitative, mechanistic investigations of immune-microenvironment dynamics in poor prognosis solid tumors. There is great need for improved imaging methods that can advance understanding of the physical and molecular mechanisms governing immune infiltration, distribution, and function in native tumor microenvironments. We propose a number of multiparametric imaging and computational methods for the two research test beds that seek to define the physical and molecular barriers to effective anti-tumor immunity and immunotherapies. A major theme of the TECH approach is to use label-free imaging approaches that can characterize and quantitate the interactions between immune cells and the tumor microenvironment. These label free methods are largely built on the platform method of multiphoton microscopy and can be used on intact cell and tissue models with minimal perturbation. T-cell identity and activation will be tracked by metabolic profiling using new fluorescence lifetime (FLIM) and hyperdimensional imaging (HDIM) approaches. These metabolically sensitive methods will be complemented by Full-Field Optical Coherence Tomography (FFOCT) to reveal new insight into metabolically relevant architecture. FLIM based FRET can be used to yield new insights into signaling molecular interactions relevant to immune-microenvironment dynamics The collagen rich extracellular matrix (ECM) will be queried with Second Harmonic Generation (SHG) imaging for collagen fiber topology measurement and collagen cross- linking measurements with Enhanced Backscattering Spectroscopy (EBS). Multiphoton Excitation (MPE) photochemistry fabrication can be used to create in vitro cell ready models of collagen fiber organization that are directly based on human data blueprints. Advanced computational analysis methods including algorithmic and machine learning approaches will be used to examine all multiparametric signals and make correlation between immune and microenvironment interactions. All imaging and computational methods will be shared not only widely within the UW and UMN research teams but importantly with the general cancer imaging community using established hardware and open source software dissemination protocols.
U 54肿瘤免疫微环境多参数成像中心(C-MITIE) 将开发一个先进的成像和数据分析的集成工具包, 预后不良的实体瘤中免疫微环境动力学的研究。非常需要 改进的成像方法,可以促进对物理和分子机制的理解 控制天然肿瘤微环境中的免疫浸润、分布和功能。我们提出了一个 两个研究试验台的多参数成像和计算方法的数量, 有效的抗肿瘤免疫和免疫治疗的物理和分子屏障。的一大主题 TECH方法是使用无标记成像方法,可以表征和定量相互作用 免疫细胞和肿瘤微环境之间的联系。这些无标签方法主要建立在 平台方法的多光子显微镜,并可用于完整的细胞和组织模型, 扰动将使用新的荧光寿命通过代谢谱跟踪T细胞身份和活化 (FLIM)和多维成像(HDIM)方法。这些代谢敏感的方法将是 辅以全视野光学相干断层扫描(FFOCT),以揭示代谢的新见解 相关架构。基于FLIM的FRET可用于产生信号分子相互作用的新见解 与免疫微环境动力学相关将询问富含胶原的细胞外基质(ECM) 二次谐波发生(SHG)成像,用于胶原纤维拓扑测量和胶原交叉 将测量与增强背散射光谱(EBS)相关联。多光子激发(MPE) 光化学制造可用于产生胶原纤维组织的体外细胞就绪模型, 直接基于人类数据蓝图。先进的计算分析方法,包括算法和 机器学习方法将用于检查所有多参数信号, 免疫和微环境相互作用。所有的成像和计算方法不仅将被共享, 在UW和UMN研究团队中广泛使用,但重要的是,一般癌症成像社区使用 建立硬件和开放源码软件传播协议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin William Eliceiri其他文献

Kevin William Eliceiri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin William Eliceiri', 18)}}的其他基金

TECH Core
技术核心
  • 批准号:
    10538591
  • 财政年份:
    2021
  • 资助金额:
    $ 41.31万
  • 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
  • 批准号:
    10249738
  • 财政年份:
    2021
  • 资助金额:
    $ 41.31万
  • 项目类别:
Center for Multiparametric Imaging of Tumor Immune Microenvironments
肿瘤免疫微环境多参数成像中心
  • 批准号:
    10374450
  • 财政年份:
    2021
  • 资助金额:
    $ 41.31万
  • 项目类别:
Center for Multiparametric Imaging of Tumor Immune Microenvironments
肿瘤免疫微环境多参数成像中心
  • 批准号:
    10538588
  • 财政年份:
    2021
  • 资助金额:
    $ 41.31万
  • 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
  • 批准号:
    10197858
  • 财政年份:
    2019
  • 资助金额:
    $ 41.31万
  • 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
  • 批准号:
    9977150
  • 财政年份:
    2019
  • 资助金额:
    $ 41.31万
  • 项目类别:
Acquisition of a Confocal Microscope for R.M Bock Laboratories
为 R.M Bock 实验室购买共焦显微镜
  • 批准号:
    7794338
  • 财政年份:
    2010
  • 资助金额:
    $ 41.31万
  • 项目类别:
ImageJ as an extensible image processing framework
ImageJ 作为可扩展的图像处理框架
  • 批准号:
    7939813
  • 财政年份:
    2009
  • 资助金额:
    $ 41.31万
  • 项目类别:
ImageJ as an extensible image processing framework
ImageJ 作为可扩展的图像处理框架
  • 批准号:
    7853788
  • 财政年份:
    2009
  • 资助金额:
    $ 41.31万
  • 项目类别:
OME-XML: Development of a Data Standard for Biological Light Microscopy
OME-XML:生物光学显微镜数据标准的开发
  • 批准号:
    7587392
  • 财政年份:
    2008
  • 资助金额:
    $ 41.31万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 41.31万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 41.31万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 41.31万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 41.31万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 41.31万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 41.31万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 41.31万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 41.31万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 41.31万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了