Fully-Analog Motion Artifact Elimination Circuit for Compact and Low Power A-ECG Monitoring Devices

适用于紧凑型低功耗 A-ECG 监测设备的全模拟运动伪影消除电路

基本信息

  • 批准号:
    10374161
  • 负责人:
  • 金额:
    $ 7.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Motion artifact elimination is a key element for ambulatory ECG monitoring devices, since ECG waveforms should be continuously recorded for a long period of time while the patient is performing real-life activities such as working, exercising, or even sleeping. However, existing ECG motion artifact elimination schemes require intensive computations, complicated circuitry, and high power consumption, thus are not suitable for continuous long-term monitoring devices. Moreover, in order to comply with the trends for wearable bio-medical sensors, the ECG motion artifact elimination techniques should lead to a device with small form factor, low power consumption, and low cost. The rationale of this research is that eliminating the motion artifacts by processing the corrupted ECG signal in the analog domain within the ECG sensor frontend will have significant merit over existing ECG motion artifact elimination techniques that are mostly realized with software algorithms or digital processing. Our hypotheses will be verified through the following specific aims: 1) fully- analog ECG motion artifact elimination technique development; and 2) validation of the proposed fully-analog ECG motion artifact elimination technique. We believe the outcomes of this work will contribute in early detection and prevention of heart failure and stroke caused by cardiac arrhythmias and atrial fibrillation, which are currently affecting a significant portion of the U.S. population. Furthermore, this work can also improve the quality of remote ECG monitoring devices that are currently expecting an increasing demand due to the social distancing requirements to prevent the spread of COVID-19.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kye-Shin Lee其他文献

Kye-Shin Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kye-Shin Lee', 18)}}的其他基金

Fully-Analog Motion Artifact Elimination Circuit for Compact and Low Power A-ECG Monitoring Devices
适用于紧凑型低功耗 A-ECG 监测设备的全模拟运动伪影消除电路
  • 批准号:
    10218893
  • 财政年份:
    2021
  • 资助金额:
    $ 7.34万
  • 项目类别:

相似海外基金

Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
  • 批准号:
    133416
  • 财政年份:
    2018
  • 资助金额:
    $ 7.34万
  • 项目类别:
    Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
  • 批准号:
    0916351
  • 财政年份:
    2009
  • 资助金额:
    $ 7.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了