Development of quantitative tools to predict patients with difficult intubation to minimize treatment related complications
开发定量工具来预测插管困难的患者,以尽量减少治疗相关的并发症
基本信息
- 批准号:10374769
- 负责人:
- 金额:$ 19.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAnatomyAnesthesia proceduresAnesthesiologyAnestheticsAppearanceBedside TestingsBreathingCaringCessation of lifeClinicalClinical TrialsComprehensionComputer-Assisted Image AnalysisConsumptionCritical IllnessData SetDevelopmentDiagnosticDiseaseEquipmentEtiologyFaceFailureFloorGeneral AnesthesiaHealthHealthcareHeart ArrestHumanHuman ResourcesImageImage AnalysisImaging technologyIntensive Care UnitsInterobserver VariabilityIntubationMedicalMethodsMissionModelingModernizationMorbidity - disease rateNoseOperative Surgical ProceduresOral cavityPatient CarePatient imagingPatientsPerformancePerioperativePre-hospital settingPredictive ValueProbabilityProceduresPublic HealthReproducibilityResearchRespiratory FailureScientistSoftware ToolsSpecificityStatistical Data InterpretationSystemSystems AnalysisTechniquesTest ResultTestingTimeTracheaTracheostomy procedureTrainingTubeUnited States National Institutes of HealthVisualWorkautoencoderautomated image analysisbaseclinical careclinical practicedeep learningdeep learning modeldesigndisorder riskendotrachealexperiencegenerative adversarial networkimprovedindexinginnovationmortalitynovel strategiespatient safetyrecruitrespiratoryresponserisk stratificationstandard of caretool
项目摘要
ABSTRACT
Endotracheal
mouth/nose
breathing
need
10%
this
to
performing
subjective
poorly
standard Unfortunately, these airway examination systems in
clinical practice perform only modestly, with sensitivities of 20-62%, specificities of 82-97%, and very low
positive predictive values, generally less than 30%, unless very liberal definitions of difficulty are used. There
are likely a number of reasons for this poor performance, including the relative rarity of difficult intubation, the
multifactorial etiology and varying definition of difficult intubation, inter-observer variability in test results, failure
to validate potential systems in patients independent of those used to derive the test, and the inadequacy of
the tests themselves.
intubation (EI) is a common medical procedure in which a plastic tube is introduced via the
into the trachea, to provide respiratory support during general anesthesia or to ameliorate
difficulty in cases of respiratory failure, cardiac arrest, or other forms of critical illness. The global
for EI is likely at least 150 million based on the WHO estimate of surgical need worldwide. Approximately
of EI attempts are difficult, and approximately 1/2000 are deemed impossible. The clinica l significance of
“can't intubate, can't ventilate” scenario is extremely important: 25% of anesthetic related deaths are due
airway mishaps. Patients are typically assessed for anatomic features that might predict difficulty in
EI prior to the procedure. In practice, anesthesiologists and other airway experts likely weigh other
factors in anticipating a difficult airway, including habitus, facial appearance, and perhaps other
understood hunches. The use of this examination to predict difficult intubation is considered the
of care in modern anesthesiology practice.
When
personnel
Conversely,
not
learning
and
intubation.
identify
accuracy
(Mallampati
anesthesiologists
reduce
mobilization
difficulty the airway is anticipated, more advanced techniques may be employed, additional
may be recruited for assistance, surgical airway expertise (i.e., tracheostomy) may be on standby
these techniques are expensive, time consuming, and uncomfortable to patients, so they should
be overused. We hypothesize that anesthesiologists' visual assessment can be modeled through deep
to identify patients with difficult intubation with high accuracy. Through innovative use of deep learning
sophisticated image analysis, this research will identify facial features tha accurately predict difficult
The research will utilize frontal as well as profile facial photographs to build a generative model to
difficult intubation patients. The developed model will be subjected to rigorous statistical analysis for
and reproducibility . In a clinical trial, the proposed model will be compared against the bedside tests
+ thryomental distance). The project will 1) result in innovative software tools to facilitate
and 2) substantially reduce unnecessary healthcare expenses. We expect that this model will
the probability of an unexpected difficult intubation and allow anesthesiologists to better prepare by
of alternative techniques, equipment, or operators.
with
.
t
摘要
气管内
口/鼻
呼吸
需要
百分之十
这
到
执行
主观
差
不幸的是,这些气道检查系统
临床实践表现一般,敏感性为20- 62%,特异性为82- 97%,
阳性预测值,通常小于30%,除非使用非常宽松的困难定义。那里
可能有许多原因导致这种不良表现,包括困难插管的相对罕见,
多因素病因和插管困难的不同定义,检查结果的观察者间差异,失败
在患者中验证潜在的系统,而不依赖于用于推导测试的系统,以及
测试本身。
插管术(EI)是一种常见的医疗程序,其中通过导管插入塑料管。
进入气管,在全身麻醉期间提供呼吸支持或改善
在呼吸衰竭、心脏骤停或其他形式的危重疾病的情况下出现困难。全球
根据世界卫生组织对全世界手术需求的估计,EI可能至少为1.5亿。约
的EI尝试是困难的,并且大约1/2000被认为是不可能的。临床意义
“不能插管,不能插管”的情况是非常重要的:25%的麻醉相关死亡是由于
气道意外通常对患者进行解剖学特征评估,这些解剖学特征可能预测患者在手术中的困难。
在手术前。在实践中,麻醉师和其他气道专家可能会权衡其他
预测困难气道的因素,包括体质,面部外观,也许还有其他
了解hunches使用该检查预测插管困难被认为是
现代麻醉学实践中的护理。
当
人员
相反地,
不
学习
和
插管
识别
精度
(马兰帕蒂
麻醉医师
减少
动员
预期气道困难,可以采用更先进的技术,
可以招募协助,外科气道专业知识(即,气管切开术)可能处于待命状态
这些技术是昂贵的,耗时的,病人不舒服,所以他们应该
被过度使用。我们假设麻醉师的视觉评估可以通过深呼吸来模拟。
以高准确性识别插管困难的患者。通过创新地使用深度学习
复杂的图像分析,这项研究将确定面部特征,准确预测困难,
这项研究将利用正面和侧面的面部照片来建立一个生成模型,
困难插管患者。开发的模型将进行严格的统计分析,
和再现性。在一项临床试验中,该模型将与床边测试进行比较
+ thryomental距离)。该项目将1)导致创新的软件工具,以促进
(二)大幅减少不必要的医疗开支。我们预计,这一模式将
意外困难插管的可能性,并允许麻醉师更好地准备,
替代技术、设备或操作员。
与
.
不
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muhammad Khalid Khan Niazi其他文献
Muhammad Khalid Khan Niazi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muhammad Khalid Khan Niazi', 18)}}的其他基金
Development of quantitative tools to predict patients with difficult intubation to minimize treatment related complications
开发定量工具来预测插管困难的患者,以尽量减少治疗相关的并发症
- 批准号:
10543840 - 财政年份:2021
- 资助金额:
$ 19.38万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Research Grant














{{item.name}}会员




