High-throughput assays and small-molecule discovery of antiviral candidates targeting influenza hemagglutinin

针对流感血凝素的抗病毒候选药物的高通量测定和小分子发现

基本信息

  • 批准号:
    10397532
  • 负责人:
  • 金额:
    $ 67.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT Influenza A viruses exhibit extreme diversity as exemplified by the multiple serotypes of the hemagglutinin (HA, H1-H18) and neuraminidase (NA, N1-N11) surface antigens. To date, only 3 of 198 possible combinations of HA and NA in avian and other animal reservoirs have been associated with human pandemics (H1N1, H2N2, H3N2). Recent appearances of H5N1, H6N1, H7N7, H7N9, H9N2, and H10N8 in humans are constant reminders of the potential for devastating new pandemics. Influenza B viruses with its two lineages further increase the health and economic burdens of seasonal influenza. No effective antiviral drugs are currently available for preventing entry of influenza A or B viruses into host cells (scientific premise). However, relatively recent discoveries of broadly neutralizing antibodies to human influenza viruses and concomitant structural studies have identified sites-of-vulnerability on the HA in pandemic, seasonal, and emerging influenza viruses. These HA surface sites include the receptor binding site and membrane-proximal stem housing the fusion machinery, both of which are essential for cellular infection. Common features for recognition of these sites can now be exploited in design of small molecules to ultimately develop broadly applicable influenza antivirals. Here, we will employ this structural information into the optimization and execution of high-throughput assays to identify new small-molecule scaffolds that target the highly conserved and vulnerable stem-binding site. High- throughput screening will be performed in parallel on representative HAs from influenza A group 1 against 600K structurally diverse molecules (SA1). We will also subject group 2 and influenza B HAs to a 300K compound screen (SA2). Validated hit compounds will be prioritized based on affinity and breadth across HAs and top candidates will be rigorously optimized into lead molecules by x-ray structure-based design cycled with medicinal chemistry. Biophysical binding, cellular infectivity and resistance assays (e.g., combinatorial viral libraries of HA mutants) will aid in iterative design, selection, and characterization of potential novel therapeutic candidates with favorable drug-like properties. All of these methods are actively employed in the Wolan and Wilson laboratories. As proof-of-concept for this approach, we identified a molecule with modest affinity to the stem of group 1 HAs with an HT assay of our own design. Its co-crystal structure with HA provided critical information towards design and synthesis of a focused compound library, which we used to produce a stereoselective molecule with nanomolar affinity and antiviral activity. Our overall goal is to identify and improve molecules with broad potency against the stem of groups 1 and 2 as well as flu B HAs. To our knowledge, we are the first to design an assay against group 2 and flu B HAs amenable to HTS (innovation). We anticipate that several classes of stem-targeted compound scaffolds will be identified with nanomolar affinity to HAs with cellular antiviral activity and suitable PK-ADME properties. Future efforts will include animal models of influenza infections to further validate our antivirals with the ultimate goal of combatting future influenza pandemics and seasonal epidemics.
项目摘要/摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IAN A WILSON其他文献

IAN A WILSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IAN A WILSON', 18)}}的其他基金

Structural Biology Core
结构生物学核心
  • 批准号:
    10549644
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
Structural and Modeling Core
结构和建模核心
  • 批准号:
    10514323
  • 财政年份:
    2022
  • 资助金额:
    $ 67.85万
  • 项目类别:
High-throughput assays and small-molecule discovery of antiviral candidates targeting influenza hemagglutinin
针对流感血凝素的抗病毒候选药物的高通量测定和小分子发现
  • 批准号:
    10612773
  • 财政年份:
    2021
  • 资助金额:
    $ 67.85万
  • 项目类别:
Exploiting Vulnerability on Influenza Virus
利用流感病毒的漏洞
  • 批准号:
    9526599
  • 财政年份:
    2017
  • 资助金额:
    $ 67.85万
  • 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
  • 批准号:
    10336287
  • 财政年份:
    2015
  • 资助金额:
    $ 67.85万
  • 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
  • 批准号:
    10643721
  • 财政年份:
    2015
  • 资助金额:
    $ 67.85万
  • 项目类别:
Exploiting sites of vulnerability on influenza viruses
利用流感病毒的脆弱点
  • 批准号:
    9114253
  • 财政年份:
    2015
  • 资助金额:
    $ 67.85万
  • 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
  • 批准号:
    10427133
  • 财政年份:
    2015
  • 资助金额:
    $ 67.85万
  • 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
  • 批准号:
    10083182
  • 财政年份:
    2015
  • 资助金额:
    $ 67.85万
  • 项目类别:
Structural insights into pandemic and emerging influenza viruses
对大流行和新出现的流感病毒的结构见解
  • 批准号:
    8644586
  • 财政年份:
    2013
  • 资助金额:
    $ 67.85万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了