Thalamic Reticular Nucleus Dysfunction in Alzheimer's Disease
阿尔茨海默病中的丘脑网状核功能障碍
基本信息
- 批准号:10396654
- 负责人:
- 金额:$ 66.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Abeta clearanceAbeta synthesisAcuteAddressAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease patientAlzheimer&aposs disease riskAmyloid beta-ProteinAmyloid beta-Protein PrecursorAnimal ModelAttentionBehaviorBrainBrain regionCell NucleusCellsChronicCognitionCognitiveCognitive deficitsComplexDepositionDiseaseDisease ProgressionDisinhibitionElectrophysiology (science)ExhibitsFunctional disorderGoalsHippocampus (Brain)Human Amyloid Precursor ProteinImpairmentIntercellular FluidLeadMaintenanceMediatingMemoryMemory impairmentMicrodialysisMusNeuronsPathologyPeptidesPharmacologyPhasePropertyProteinsSleepSleep ArchitectureSleep DeprivationSleep FragmentationsSleep Wake CycleSleep disturbancesSliceSlow-Wave SleepSynapsesTestingThalamic structureTherapeuticTransgenic MiceViralWakefulnessabeta accumulationabeta depositionbasedaily functioningdesigndesigner receptors exclusively activated by designer drugsimprovedin vivoinsightinterstitialmemory consolidationmouse modelmutantneuron lossneurotoxicnovelnovel therapeutic interventionpoor sleeppublic health relevancerestorationtargeted treatmenttau Proteins
项目摘要
PROJECT SUMMARY
Sleep disturbances predict risk of Alzheimer’s disease (AD). Sleep-wake cycles critically regulate brain
interstitial fluid (ISF) levels of Aβ and tau, two critical proteins that accumulate in AD. Both Aβ and tau are
released by neuronal activity, which is higher during wakefulness than in sleep. Moreover, sleep is a critical
phase during which factors in the ISF are cleared from the brain. Therefore, sleep disturbances affect daily
function and also contribute to disease progression. However, little is known about which brain regions are
affected in AD to give rise to sleep disturbances, making it difficult to identify the circuit level mechanisms that
drive dysfunction, or to design targeted therapeutic strategies. This project tests the hypothesis that the
thalamic reticular nucleus (TRN) is a critical brain region in AD, and that impairments in its activity drive sleep
disturbances and exacerbate disease progression. The TRN is a major component of the thalamocortical-
corticothalamic network that regulates sleep, attention, and memory, which are all affected in AD. However,
little is known about the state of TRN in AD patients or in animal models. We found that in transgenic mice
expressing mutant human amyloid precursor protein (APP mice), TRN activity is strikingly reduced, in the
absence of cell loss. Such reductions in TRN activity led to sleep fragmentation and reductions in slow wave
sleep (SWS), and predicted the magnitude of Aβ deposition in both hippocampus and cortex, which may relate
to the fact that SWS is the phase of sleep during which activity-dependent production of Aβ is reduced, and Aβ
is cleared from the brain. Moreover, deficits in SWS and sleep maintenance manifest early in disease in APP
mice, prior to hippocampal deficits, suggesting that TRN impairment may both predict and contribute to
disease progression. The goals of this proposal are to identify cellular mechanisms that impair TRN activity,
and test if selectively manipulating neuronal activity in the TRN can normalize sleep, reduce Aβ accumulation,
and improve memory. To achieve these goals, in Aim 1 we will use electrophysiology and pharmacology in
thalamic slices to identify the intrinsic, synaptic, and network properties of TRN that result in its hypoactivity in
APP mice. In Aim 2, we will use DREADDs to acutely activate TRN cells in APP mice to test if TRN activation
affects dynamics of interstitial Aβ, and/or memory consolidation. In Aim 3, we will use DREADD-mediated
activation of TRN in APP mice to test if chronic activation of TRN can normalize sleep parameters, reduce Aβ
accumulation, and improve memory. Results from this project will have major impact because they: 1) highlight
a vulnerable network early in disease that may predict and contribute to disease progression, and 2) identify a
novel therapeutic strategy with potential to normalize sleep, improve memory, and delay disease progression
in Alzheimer’s disease. Insights gained will also be used to derive general principles about the dynamics of
AD-related proteins like Aβ and tau in the brain, which will impact our ability to treat this complex disease.
项目摘要
睡眠障碍预测阿尔茨海默氏病(AD)的风险。睡眠效果周期严格调节大脑
aβ和tau的间质液(ISF)水平,两种积累在AD中的临界蛋白。 Aβ和Tau都是
由神经元活动发布,在清醒期间比睡眠更高。而且,睡眠是关键
阶段在其中从大脑中清除ISF中的因素。因此,睡眠障碍每天影响
功能,也有助于疾病进展。但是,关于哪些大脑区域的了解知之甚少
在广告中受到影响以引起睡眠障碍,因此难以确定电路水平机制
驱动功能障碍或设计有针对性的治疗策略。该项目检验了以下假设
丘脑网状核(TRN)是AD的关键大脑区域,其活性障碍驱动睡眠
干扰和加剧疾病进展。 TRN是丘脑皮质的主要组成部分
调节睡眠,注意力和记忆的皮质丘脑网络都受到AD的影响。然而,
对于AD患者或动物模型中的TRN状态知之甚少。我们发现在转基因小鼠中
表达突变的人淀粉样蛋白前体蛋白(APP小鼠),TRN活性大大降低
缺乏细胞损失。 TRN活性的这种减少导致睡眠碎片和慢波减少
睡眠(SWS),并预测海马和皮质中Aβ沉积的大小,这可能有关
事实是,SWS是睡眠阶段,在该阶段降低了活性依赖性Aβ,而Aβ的阶段
从大脑中清除。此外,在APP中的疾病早期在SWS和睡眠维持中定义
在海马缺陷之前,小鼠表明TRN损伤可能会预测并有助于
疾病进展。该建议的目标是确定损害TRN活性的细胞机制,
并测试TRN中有选择性操纵神经元活性是否可以使睡眠正常化,减少Aβ的积累,
并改善记忆。为了实现这些目标,在AIM 1中,我们将使用电生理学和药理学
丘脑切片以识别TRN的固有,突触和网络性能,从而导致其在
应用小鼠。在AIM 2中,我们将使用Dreadds急性激活App小鼠中的TRN细胞以测试TRN是否激活
影响间质Aβ和/或记忆巩固的动力学。在AIM 3中,我们将使用Dreadd介导的
APP小鼠中TRN激活以测试TRN的慢性激活是否可以使睡眠参数归一化,请降低Aβ
积累并改善记忆力。该项目的结果将产生重大影响,因为它们:1)突出显示
疾病早期的脆弱网络,可能预测并导致疾病进展,2)确定
新型的治疗策略,有可能使睡眠正常,改善记忆力并延迟疾病进展
获得的见解也将用于得出有关动态的一般原则
广告相关的蛋白质(例如Aβ和TAU)在大脑中,这将影响我们治疗这种复杂疾病的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Beierlein其他文献
Michael Beierlein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Beierlein', 18)}}的其他基金
Corticothalamic circuits mediating behavioral adaptations to unexpected reward omission
皮质丘脑回路介导对意外奖励遗漏的行为适应
- 批准号:
10734683 - 财政年份:2023
- 资助金额:
$ 66.3万 - 项目类别:
Thalamic Reticular Nucleus Dysfunction in Alzheimer's Disease
阿尔茨海默病中的丘脑网状核功能障碍
- 批准号:
10612400 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Thalamic Reticular Nucleus Dysfunction in Alzheimer's Disease
阿尔茨海默病中的丘脑网状核功能障碍
- 批准号:
10058690 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Thalamic Reticular Nucleus Dysfunction in Alzheimer's Disease
阿尔茨海默病中的丘脑网状核功能障碍
- 批准号:
10221592 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Synaptic Integration in Neurons of the Thalamic Reticular Nucleus
丘脑网状核神经元的突触整合
- 批准号:
8273239 - 财政年份:2012
- 资助金额:
$ 66.3万 - 项目类别:
Synaptic Integration in Neurons of the Thalamic Reticular Nucleus
丘脑网状核神经元的突触整合
- 批准号:
8787517 - 财政年份:2012
- 资助金额:
$ 66.3万 - 项目类别:
Synaptic Integration in Neurons of the Thalamic Reticular Nucleus
丘脑网状核神经元的突触整合
- 批准号:
8413847 - 财政年份:2012
- 资助金额:
$ 66.3万 - 项目类别:
相似国自然基金
基于ABeta聚集体重组与表面伪装策略的抗AD药物设计合成及活性研究
- 批准号:81973174
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Thalamic Reticular Nucleus Dysfunction in Alzheimer's Disease
阿尔茨海默病中的丘脑网状核功能障碍
- 批准号:
10612400 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Thalamic Reticular Nucleus Dysfunction in Alzheimer's Disease
阿尔茨海默病中的丘脑网状核功能障碍
- 批准号:
10058690 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Thalamic Reticular Nucleus Dysfunction in Alzheimer's Disease
阿尔茨海默病中的丘脑网状核功能障碍
- 批准号:
10221592 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
3D Models of the Blood-Brain Barrier for Studying Trauma-Induced Cerebral and Systemic Injuries
用于研究创伤引起的脑损伤和全身损伤的血脑屏障 3D 模型
- 批准号:
10711489 - 财政年份:2020
- 资助金额:
$ 66.3万 - 项目类别:
Defining the role of meningeal lymphatic dysfunction in Alzheimer's Dementia.
定义脑膜淋巴功能障碍在阿尔茨海默氏痴呆中的作用。
- 批准号:
9768137 - 财政年份:2018
- 资助金额:
$ 66.3万 - 项目类别: