High Throughput Functional Dissection Of Adiposity GWAS Loci Using Model Systems
使用模型系统对肥胖 GWAS 位点进行高通量功能解剖
基本信息
- 批准号:10396596
- 负责人:
- 金额:$ 67.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Adipose tissueAutomobile DrivingBig DataBiologicalBiological ModelsBiologyBrainCandidate Disease GeneClinicalCohort StudiesConsumptionDatabasesDissectionDrosophila genusDrosophila melanogasterEthnic OriginEvaluationFatty acid glycerol estersGene Expression RegulationGenesGeneticGenomeGenome ScanGenomic SegmentGenotype-Tissue Expression ProjectGrantHumanHuman GeneticsIndividualInsectaLeadLightMapsMeta-AnalysisMethodsMethylationMusObesityObesity EpidemicOrthologous GenePathway interactionsPatternPhenotypePrevention approachPrevention strategyProceduresPublishingRNA InterferenceResearch PersonnelResearch SubjectsResourcesRiskSamplingScanningScienceScientistSystemTimeTissuesTrans-Omics for Precision MedicineUncertaintyUntranslated RNAVariantWhole BloodWorkcausal variantcohortdeep sequencingexperimental studyflygene interactiongenetic variantgenome wide association studyknock-downlipid metabolismmultiple omicsnovelnovel therapeuticsobesity geneticsobesity riskoverexpressionpromoterrisk variantsuccessvirtual
项目摘要
We believe that the field of human obesity genetics has stalled. Massive Genome-Wide Association studies of
hundreds of thousands of subjects succeeded in identifying over a thousand novel “statistical loci” that
unquestionably tag increased obesity risk variants. Because these loci are almost all in regions that were not
on anyone’s candidate gene list, the promise has been that these novel loci point to new biology that could lead
to new therapies and prevention strategies. But exactly what these loci do and how they do it continues to
remain a mystery for almost all loci. Functional scientists have faced challenges following up on these findings,
because of a “perfect storm” of difficulties. LD patterns in the genome complicate efforts to fine map and
statistically dissect driver from passenger variants, even after deep sequencing of the regions in multiple
ethnicities, so the exact causal variants are rarely known. Even if they were known, the effect sizes of these
variants are each clinically trivial despite their overwhelming statistical significance. Worst of all, it is estimated
that over 90% appear to be tagging non-coding regions. We believe a huge rate-limiting step to exploiting these
new discoveries continues to be moving from “statistical loci” to the gene(s) through which they are acting. Many
researchers use a default annotation of the “nearest gene” to the statistical locus as a starting point, but if our
published experiments (Baranski et al., 2018) are generalizable, this may be wrong about half the time.
Regulome annotation in reference databases is emerging as a critical resource (e.g. ENCODE and GTEX), but
it is still early days. The non-coding genome is huge, and much of the annotation is either lacking, insufficient,
or not specific enough to allow definitive mapping from locus to gene with these resources alone. Large cohort
studies and consortia such as TOPMed have begun conducting various Omics scans in the same individuals in
which locus discoveries were made, thus providing the potential to shed light on the underlying mechanisms
behind the statistical loci, and in particular, suggest which genes, might be critical. But almost all of these large
human efforts are of practical necessity limited to whole blood and tissues of convenience, and much less has
been possible in the presumed tissues of action. By contrast, the most important tissues for obesity, like the
brain, can be accessed and manipulated in model systems to shed light on mechanisms. Likely every such
locus will have a different biological explanation, but pursuing functional experiments for each locus one at a
time is challenging, time consuming and expensive. What is needed is a high throughput strategy, that will
interrogate many loci simultaneously. We propose to use our successful, published high throughput Drosophila
system to efficiently screen for many fat storage genes among the set of human candidates that have fly
orthologs (recognizing that this is a “low hanging fruit” approach that will not work for every locus), and then
validate in the mouse those that are conserved from human to insect.
我们认为人类肥胖遗传学领域已经停滞不前。大规模全基因组关联研究
成千上万的受试者成功地确定了一千多个新的“统计位点”,
毫无疑问地标记了肥胖风险增加的变体。因为这些基因座几乎都位于
在任何人的候选基因名单上,这些新的基因座都有可能指向新的生物学,
新疗法和预防策略。但这些基因座的作用和作用方式
对几乎所有的地点来说都是个谜。功能科学家在跟进这些发现时面临着挑战,
因为一场困难的“完美风暴”。基因组中的LD模式使精细图谱的工作复杂化,
从统计学上分析驾驶员与乘客的变异,即使在多个区域的深度测序之后,
种族,所以确切的因果变异很少知道。即使它们是已知的,
尽管变体具有压倒性的统计学显著性,但它们各自在临床上是微不足道的。最糟糕的是,据估计
超过90%的基因都在标记非编码区我们认为,利用这些技术的一个巨大的限速步骤
新的发现继续从“统计基因座”转移到它们发挥作用的基因。许多
研究人员使用与统计位点“最近基因”的默认注释作为起点,但如果我们的
公开的实验(Baranski等人,2018)是可概括的,这可能是错误的大约一半的时间。
参考数据库中的调节组注释正在成为一种关键资源(例如ENCODE和GTEX),但
现在还为时尚早。非编码基因组是巨大的,许多注释要么是缺乏的,不足的,
或者不够特异,无法仅使用这些资源进行从基因座到基因的明确映射。大型队列
研究和财团,如TOPMed已经开始在同一个人进行各种组学扫描,
发现了哪些位点,从而提供了阐明潜在机制的可能性。
在统计学位点背后,特别是,暗示哪些基因可能是关键的。但几乎所有这些大型
人类的努力实际上必须限于全血和方便的组织,
在假定的作用组织中是可能的。相比之下,最重要的肥胖组织,如
大脑,可以在模型系统中访问和操纵,以揭示机制。可能每一个这样的
基因座会有不同的生物学解释,但对每个基因座进行功能实验,
时间是具有挑战性的、耗时的和昂贵的。所需要的是高通量策略,其将
同时询问多个位点。我们建议使用我们成功的,已发表的高通量果蝇
该系统可以在一组有苍蝇的人类候选人中有效筛选许多脂肪储存基因
直系同源物(认识到这是一种“低挂水果”的方法,不会对每个位点都起作用),然后
在小鼠中验证那些从人类到昆虫的保守基因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas John Baranski其他文献
Thomas John Baranski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas John Baranski', 18)}}的其他基金
High Throughput Functional Dissection Of Adiposity GWAS Loci Using Model Systems
使用模型系统对肥胖 GWAS 位点进行高通量功能解剖
- 批准号:
10163841 - 财政年份:2020
- 资助金额:
$ 67.29万 - 项目类别:
Novel Cell-based Real Time Platform for GPCR Drug Discovery
用于 GPCR 药物发现的新型基于细胞的实时平台
- 批准号:
8647548 - 财政年份:2014
- 资助金额:
$ 67.29万 - 项目类别:
Genetic Architecture of Adiposity in Multiple Large Cohorts
多个大群体中肥胖的遗传结构
- 批准号:
8774098 - 财政年份:2010
- 资助金额:
$ 67.29万 - 项目类别:
G Protein Activation Mechanisms by Hormone Receptors
激素受体的 G 蛋白激活机制
- 批准号:
7901872 - 财政年份:2009
- 资助金额:
$ 67.29万 - 项目类别:
G Protein Activation Mechanisms by Hormone Receptors
激素受体的 G 蛋白激活机制
- 批准号:
7212648 - 财政年份:2007
- 资助金额:
$ 67.29万 - 项目类别:
G Protein Activation Mechanisms by Hormone Receptors
激素受体的 G 蛋白激活机制
- 批准号:
7577353 - 财政年份:2007
- 资助金额:
$ 67.29万 - 项目类别:
G Protein Activation Mechanisms by Hormone Receptors
激素受体的 G 蛋白激活机制
- 批准号:
7352768 - 财政年份:2007
- 资助金额:
$ 67.29万 - 项目类别:
Trans-NIDDK Short-Term Training for Medical Students
跨NIDDK医学生短期培训
- 批准号:
8663885 - 财政年份:2006
- 资助金额:
$ 67.29万 - 项目类别:
Trans-NIDDK Short-Term Training for Medical Students
跨NIDDK医学生短期培训
- 批准号:
8468684 - 财政年份:2006
- 资助金额:
$ 67.29万 - 项目类别:
Trans-NIDDK Short-Term Training for Medical Students
跨NIDDK医学生短期培训
- 批准号:
8254374 - 财政年份:2006
- 资助金额:
$ 67.29万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 67.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 67.29万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 67.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 67.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)