Corticospinal Tract Development in Intrauterine Growth Restriction
宫内生长受限时皮质脊髓束的发育
基本信息
- 批准号:10396506
- 负责人:
- 金额:$ 3.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:2&apos,3&apos-Cyclic-Nucleotide Phosphodiesterases3-DimensionalAccelerationAdultAffectAnatomyBiochemicalBioinformaticsBiomedical EngineeringBiometryBirth WeightBrainBrain InjuriesBrain StemCardiopulmonaryCell DeathCellsCerebral PalsyCerebrumCorticospinal TractsDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDistalDown-RegulationDyskinetic syndromeElectromyographyEnvironmentExposure toExtensorFacultyFetal GrowthFetal Growth RetardationFiberFlexorFoundationsFutureGaitGenesGeneticGenetic TranscriptionHumanHyperoxiaHyperreflexiaImageImaging TechniquesInfantInjuryInvestigationJointsKnowledgeLeadLearningLesionLimb structureLocomotionMagnetic Resonance ImagingManuscriptsMentorsMentorshipMessenger RNAMethodsModelingModificationMorbidity - disease rateMotorMovementMusMuscleMyelinNervous System TraumaNeurologicOligodendrogliaOntologyPathologicPathway interactionsPerinatalPerinatal Brain InjuryPhenotypePhysical therapyPositioning AttributePregnancyPreparationRNARecording of previous eventsResearchResearch PersonnelRiboTagRibosomesRiskSpasmSpastic Cerebral PalsySpinal CordTechnical ExpertiseTechniquesTestingTherapeutic InterventionThromboxane A2TimeTranscriptVolitionbasebrain dysfunctiondifferential expressionimaging modalityin vivoin vivo imaginginnovationinsightkinematicslimb movementmortality riskmotor deficitmotor disordermotor impairmentmouse modelmyelinationnegative affectneonatal patientneonateneuromuscularneuromuscular functionnext generation sequencingnovelnovel therapeutic interventionpostnatalresponsetranscriptometranscriptomicswhite matterwhite matter injury
项目摘要
Project Summary
Infants born following intrauterine growth restriction (IUGR) are at risk for the development of cerebral
palsy (CP). However, it is not precisely understood how perinatal neurologic injury due to IUGR results in
motor dysfunction. Using a novel thromboxane A2 (TXA2) murine model of IUGR, we have previously
demonstrated significant downregulation of major myelin genes (MoBP, PLP1, CNPase, MOG) in whole brain,
decreased corticospinal tract (CST) volume in the brain, and impaired gait. The most profound injury occurred
when IUGR was combined with postnatal hyperoxia exposure, suggesting a “double hit” mechanism. These
findings support a model in which transcriptional changes occur after IUGR that alter oligodendrocytes (OL)
making them more susceptible to hyperoxia. Our findings lead us to the central hypothesis that IUGR with
postnatal hyperoxia results in cell specific changes to the OL transcriptome that lead to pathologic changes to
the CST and motor deficits seen in CP. In Aim 1, in vivo genetic and biochemical methods will be employed in
this model to determine how IUGR/postnatal hyperoxia change the OL transcriptome. This aim will add further
understanding to the underlying causes of white matter (WM) injury after IUGR. As CST is known to be
disturbed in spastic CP, the most common type of CP in perinatal brain injury, Aim 2 will evaluate CST
development using advanced in vivo imaging techniques to demonstrate how IUGR/postnatal hyperoxia alter
development of descending motor tracts in the spinal cord. In Aim 3, altered motor input resulting in distal limb
movement abnormalities and increased hyperreflexia/ spasms will be quantified using novel motor tests. The
innovative motor testing employed in this aim will provide the means to rigorously quantify motor dysfunction
resulting from our injury model and compare it to motor dysfunction seen in CP.
This study will impact the field by 1) providing insight into specific changes to the OL transcriptome
leading to abnormal myelination and CST development and 2) expanding the understanding of the
development of the CP phenotype in IUGR. This study is significant because of its quantitative approach to
imaging modalities and motor assessments that can be applied more broadly to other murine models of
perinatal brain injury and provide a basis for investigating novel therapeutic interventions in humans. Finally,
this study will provide an excellent vehicle for the applicant to develop into an independent investigator.
Investigations will be performed in an environment with an established history of successful mentorship of
junior faculty to independence. With the support of this application, the applicant will 1) advance her technical
skills (RiboTag RNA isolation, next generation sequencing, murine MRI, electromyography and kinematic
testing techniques) and 2) learn advanced biostatistics. Future independent studies will focus on the interplay
between pathways altered by IUGR/hyperoxia in WM development and potential therapeutic interventions that
can be directly tested in the murine models and ultimately neonatal patients.
项目概要
宫内生长受限(IUGR)后出生的婴儿面临脑部发育的风险
麻痹(CP)。然而,目前尚不清楚 IUGR 导致的围产期神经损伤如何导致
运动功能障碍。使用新型血栓素 A2 (TXA2) IUGR 小鼠模型,我们之前已经
证明全脑中主要髓磷脂基因(MoBP、PLP1、CNPase、MOG)显着下调,
大脑皮质脊髓束(CST)体积减少,步态受损。最严重的伤害发生了
当 IUGR 与产后高氧暴露相结合时,表明存在“双重打击”机制。这些
研究结果支持一个模型,其中 IUGR 后发生转录变化,从而改变少突胶质细胞 (OL)
使他们更容易受到高氧的影响。我们的研究结果引导我们得出一个中心假设:IUGR 与
出生后高氧导致 OL 转录组发生细胞特异性变化,从而导致病理变化
CP 中出现的 CST 和运动缺陷。在目标 1 中,将采用体内遗传和生化方法
该模型用于确定 IUGR/产后高氧如何改变 OL 转录组。这一目标将进一步增加
了解 IUGR 后白质 (WM) 损伤的根本原因。众所周知,CST
痉挛性脑瘫是围产期脑损伤中最常见的脑瘫类型,目标 2 将评估 CST
使用先进的体内成像技术进行开发,以证明 IUGR/产后高氧如何改变
脊髓下行运动束的发育。在目标 3 中,改变运动输入导致远端肢体
将使用新颖的运动测试来量化运动异常和反射亢进/痉挛的增加。这
为此目的采用的创新运动测试将提供严格量化运动功能障碍的方法
我们的损伤模型得出的结果,并将其与 CP 中出现的运动功能障碍进行比较。
这项研究将通过 1)深入了解 OL 转录组的具体变化来影响该领域
导致髓鞘形成和 CST 发育异常,2) 扩大对髓鞘形成和 CST 发育的理解
IUGR 中 CP 表型的发展。这项研究意义重大,因为它采用了定量方法
成像方式和运动评估可以更广泛地应用于其他小鼠模型
围产期脑损伤,并为研究人类新型治疗干预措施提供基础。最后,
这项研究将为申请人发展成为一名独立研究者提供一个极好的工具。
调查将在具有成功指导历史的环境中进行
初级教师独立。在本申请的支持下,申请人将 1) 提高其技术水平
技能(RiboTag RNA 分离、下一代测序、小鼠 MRI、肌电图和运动学
测试技术)和2)学习先进的生物统计学。未来的独立研究将重点关注相互作用
WM 发展中 IUGR/高氧改变的途径与潜在的治疗干预措施之间的关系
可以直接在小鼠模型和最终的新生儿患者中进行测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jill Chang其他文献
Jill Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jill Chang', 18)}}的其他基金
Corticospinal Tract Development in Intrauterine Growth Restriction
宫内生长受限时皮质脊髓束的发育
- 批准号:
10672052 - 财政年份:2022
- 资助金额:
$ 3.57万 - 项目类别:
Corticospinal Tract Development in Intrauterine Growth Restriction
宫内生长受限时皮质脊髓束的发育
- 批准号:
10591594 - 财政年份:2020
- 资助金额:
$ 3.57万 - 项目类别:














{{item.name}}会员




