Training in Complex Systems and Data Science Approaches Applied to the Neurobiology of Drug Use

适用于药物使用神经生物学的复杂系统和数据科学方法培训

基本信息

项目摘要

The purpose of this program is to train pre- and post-doctoral scholars in the application of complex systems and data science approaches to the neurobiology of substance abuse, with the dual strategies of: (1) training candidates with expertise in data science, applied mathematics, computer science, and complex systems to apply their skills to the neuroscience of addiction; and (2) training candidates pursuing addiction research from neuroscience, psychiatry, psychology and genetics in the theory and application of Big Data methods, including network analysis, machine learning algorithms, and Bayesian statistical models. Trainees will be paired across disciplines, and academic stages, for research collaboration and reciprocal tutoring to facilitate the development of proficiency in each trainee's new field. Each trainee will also be dual mentored, their secondary mentor being their partner's primary. Over its five-year duration, the program will provide three years of funding for each of five pairs of pre- and post-doctoral researchers, with an initial cohort of four (two pairs), and additional pairs entering in each of the middle three years. The core curriculum will incorporate: (1) the established complex systems and data science graduate certificate at the University of Vermont; (2) course work in neuroscience, psychology and addiction, including classes focused on developing human subjects research skills; as well as (3) specialized courses designed to directly and effectively bridge the gap between the core disciplines. Trainees will also attend a biweekly journal club and monthly seminar, led by senior participants in the program, to further support the acquisition of multidisciplinary research skills. The overarching aim of the program is to produce researchers poised to apply state-of-the-art analytic tools to understand the neurobiology of drug abuse. The focus will be characterizing the neural substrates of addiction and other comorbid psychopathologies, always with an eye toward clinical application. Recent increases in the quantity and quality of large-sample, multi-modal datasets that address the neural, genetic and environmental substrates of addiction make this a propitious time for such a training program. Researchers at UVM are ideally suited to provide this training as there exist close links between addiction research, cognitive neuroscience, complex systems and data science, and the mentoring faculty have access to exceptional datasets that are ideal for interrogation with Big Data methods. Armed with coherent domain knowledge and practiced with advanced methods for complex systems, trainees will develop analysis pipelines that: (1) incorporate sophisticated aggregation of longitudinal and multi-modal datasets, including various neuroimaging modalities, genetic information, survey and clinical data; (2) harness the power of supercomputing and modern machine learning algorithms to step beyond linear and univariate effects; and (3) address questions of immediate clinical importance to substance abuse that can inform the determination of risk factors, treatment and intervention strategy, and policy decisions.
该计划的目的是培养在复杂系统的应用前和博士后学者

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cortical profiles of numerous psychiatric disorders and normal development share a common pattern
  • DOI:
    10.1038/s41380-022-01855-6
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Cao, Zhipeng;Cupertino, Renata B.;Garavan, Hugh
  • 通讯作者:
    Garavan, Hugh
Structural brain differences do not mediate the relations between sex and personality or psychopathology.
大脑结构差异并不调节性别与人格或精神病理学之间的关系。
  • DOI:
    10.1111/jopy.12704
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Hyatt,CourtlandS;Listyg,BenjaminS;Owens,MaxM;Carter,NathanT;Carter,DorothyR;Lynam,DonaldR;Harden,KPaige;Miller,JoshuaD
  • 通讯作者:
    Miller,JoshuaD
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter S. Dodds其他文献

Peter S. Dodds的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter S. Dodds', 18)}}的其他基金

Training in Complex Systems and Data Science Approaches Applied to the Neurobiology of Drug Use
适用于药物使用神经生物学的复杂系统和数据科学方法培训
  • 批准号:
    9917762
  • 财政年份:
    2018
  • 资助金额:
    $ 17.68万
  • 项目类别:

相似海外基金

Data Science Course Hub: ボトムアップアプローチによるデータサイエンス教育の改善
数据科学课程中心:通过自下而上的方法改进数据科学教育
  • 批准号:
    24K15234
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
  • 批准号:
    2339025
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Continuing Grant
CREST HBCU-RISE: Advancing Theoretical Artificial Intelligence Infrastructure for Modern Data Science Challenges
CREST HBCU-RISE:推进理论人工智能基础设施应对现代数据科学挑战
  • 批准号:
    2409093
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Continuing Grant
Conference: SDSU Data Science Symposium
会议:SDSU 数据科学研讨会
  • 批准号:
    2409890
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
Overcoming Programming Barriers for Non-Computing Majors in Data Science
克服数据科学非计算专业的编程障碍
  • 批准号:
    2336929
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
Building an agenda and community of biodiversity data science
建立生物多样性数据科学议程和社区
  • 批准号:
    2329533
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
Community Impact with Teacher Leaders in Data Science and Mathematical Modeling
数据科学和数学建模领域教师领导者的社区影响
  • 批准号:
    2345194
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Continuing Grant
Conference: Two-Year College Data Science Initiative (TYCDSI) Workshop
会议:两年大学数据科学计划 (TYCDSI) 研讨会
  • 批准号:
    2402290
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
REU Site: Computational Mathematics for Data Science
REU 网站:数据科学的计算数学
  • 批准号:
    2349534
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了