Multi-scale modeling of inherited pediatric cardiomyopathies
遗传性儿童心肌病的多尺度建模
基本信息
- 批准号:9788685
- 负责人:
- 金额:$ 127.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3-Methylglutaconic aciduria type 2AddressArrhythmiaArrhythmogenic Right Ventricular DysplasiaBioinformaticsBiologicalBiological AssayBiological ModelsBiomedical EngineeringCardiacCardiac MyocytesCardiologyCardiomyopathiesCatecholaminergic Polymorphic Ventricular TachycardiaCell Culture TechniquesCell modelCellsCessation of lifeClinicalClinical DataClinical TrialsDataDimensionsDiseaseDisease modelDysplasiaElectrophysiology (science)EngineeringEnvironmentFunctional disorderGenesGenetic MaterialsGenome engineeringGoalsHeart DiseasesHeart TransplantationHereditary DiseaseHumanIn VitroIndividual DifferencesInheritedLaboratoriesLeadLinkMeasuresModelingMolecular BiologyMyocardialMyocardial ContractionMyocardial tissueMyocardiumOrganPathogenesisPathway interactionsPatientsPediatric CardiomyopathyPhasePhenotypePhysiologicalPhysiologyProcessPropertyRare DiseasesSeverity of illnessSpeedStructureSystemTachycardiaTestingTherapeutic TrialsTissue EngineeringTissue ModelTissuesWorkarrhythmogenic cardiomyopathybasebench to bedsidedisease phenotypedrug developmentgene therapygenome editingheart cellheart rhythmhigh throughput screeninghuman modelimprovedimproved outcomein vitro Modelindividual patientinduced pluripotent stem cellinsightinter-individual variationinterdisciplinary approachmedication safetymicrophysiology systemmulti-scale modelingnew therapeutic targetnovelnovel therapeutic interventionnovel therapeuticspatient variabilityresponsesafety testingscreeningsmall moleculetargeted treatmenttherapeutic candidatetherapeutic targetthree-dimensional modelingtreatment responsetwo-dimensional
项目摘要
Project summary
The goal of this proposal is to advance in vitro modeling of human heart disease using genome-edited and
patient-derived iPSCs, to use these models to gain new insights into disease pathogenesis, and to develop
new therapeutic strategies. We focus on three monogenic cardiac diseases, Barth syndrome (BTHS), cate-
cholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic cardiomyopathy (ACM; also
known as arrhythmogenic right ventricular cardiomyopathy/dysplasia). These disorders represent major
classes of inherited heart disease, namely disorders of cardiac rhythm (CPVT; ACM) and contraction (BTHS;
ACM). No targeted therapies are available for these disorders, and current management options are far from
ideal, resulting in tragic deaths or cardiac transplantation. Our studies of these diseases will push the envelope
of in vitro disease models in four principle ways: (1) by refining in vitro systems to better reflect the physiology
of native myocardium; (2) by objectively evaluating the ability of induced pluripotent stem cell-derived
cardiomyocyte (iPSC-CM) models to capture inter-individual variation between patients; (3) by identifying novel
therapies through either improved mechanistic understanding or unbiased screening; and (4) by performing
proof-of-concept “Clinical trials in a dish”, in which responses of engineered cell and tissue models are
compared to responses of mammalian models or patients. In the UG3 Phase, we will develop physiological
assay systems of these three monogenic cardiac diseases (Aim 1). These assay systems will scale from cell
pairs to three dimensional engineered ventricles, providing the range of systems necessary to address
challenges spanning high throughput screening to disease pathogenesis to in vitro “clinical trials”. In the UH3
Phase, we will use the 2D tissues and 3D ventricles to discover novel treatments through screens and
mechanistic studies (Aim 2). We will use the 3D ventricles to perform “Clinical trials in a dish” (Aim 3), to
determine the extent to which iPSC-based models capture inter-individual variation and to measure the
therapeutic responses of a panel of patient microphysiological models. Our vertically integrated,
multidisciplinary approach will bring together cardiac biologists, bioengineers, bioinformaticians, and clinicians
to advance the state of the art for in vitro cardiac disease modeling. The impact will extend well beyond the
three rare diseases directly studied by improving cardiac disease models and providing data on the usefulness
of iPSC-CMs for capturing individual patient phenotypes. Creation of in vitro models of normal human organs
would also greatly expedite drug development, by increasing the precision and speed of drug safety testing.
Our deliverables include advances in iPSC-CM differentiation; novel bioengineered systems to assay iPSC-CM
physiological properties; new insights into the pathogenesis of three representative cardiac diseases; and
identification of therapeutic targets and lead compounds for disease treatment.
项目摘要
该提案的目标是利用基因组编辑和基因组测序技术,
患者来源的iPSC,使用这些模型来获得对疾病发病机制的新见解,并开发
新的治疗策略。我们重点关注三种单基因心脏病,Barth综合征(BTHS),cate-
胆碱能多形性室性心动过速(CPVT)和致心律失常性心肌病(ACM;也
称为致心肌病性右心室心肌病/发育不良)。这些疾病代表了主要的
遗传性心脏病的类别,即心律失常(CPVT; ACM)和收缩障碍(BTHS;
ACM)。没有针对这些疾病的靶向治疗,目前的管理选择也远远不够。
理想,导致悲惨的死亡或心脏移植。我们对这些疾病的研究将突破
体外疾病模型的四个主要方面:(1)通过完善体外系统,以更好地反映生理
(2)通过客观评估诱导多能干细胞衍生的能力,
心肌细胞(iPSC-CM)模型,以捕获患者之间的个体间差异;(3)通过识别新的
通过改进的机制理解或无偏见的筛选进行治疗;以及(4)通过执行
概念验证“培养皿中的临床试验”,其中工程细胞和组织模型的反应是
与哺乳动物模型或患者的反应相比。在UG 3阶段,我们将开发生理学
这三种单基因心脏病的检测系统(目的1)。这些分析系统将从细胞
对三维工程心室,提供了一系列必要的系统,以解决
从高通量筛选到疾病发病机制再到体外“临床试验”的挑战。在UH 3
阶段,我们将使用2D组织和3D心室,通过屏幕和
机制研究(目标2)。我们将使用3D心室执行“培养皿中的临床试验”(目标3),
确定基于iPSC的模型捕获个体间差异的程度,并测量
一组患者微生理学模型的治疗反应。我们的垂直整合,
多学科方法将汇集心脏生物学家、生物工程师、生物信息学家和临床医生
以推进体外心脏病建模的最新技术。其影响将远远超出
通过改进心脏病模型直接研究三种罕见疾病,并提供有用性数据
用于捕获个体患者表型的iPSC-CM。正常人体器官体外模型的建立
通过提高药物安全测试的精度和速度,还将大大加快药物开发。
我们的成果包括iPSC-CM分化的进展;用于检测iPSC-CM的新型生物工程系统
生理特性;对三种代表性心脏病发病机制的新见解;以及
用于疾病治疗的治疗靶点和先导化合物的鉴定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN KIT PARKER其他文献
KEVIN KIT PARKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN KIT PARKER', 18)}}的其他基金
Tissue chips for precision treatment of catecholaminergic polymorphic ventricular tachycardia
组织芯片精准治疗儿茶酚胺能多形性室性心动过速
- 批准号:
10223467 - 财政年份:2020
- 资助金额:
$ 127.54万 - 项目类别:
Tissue chips for precision treatment of catecholaminergic polymorphic ventricular tachycardia
组织芯片精准治疗儿茶酚胺能多形性室性心动过速
- 批准号:
10038088 - 财政年份:2020
- 资助金额:
$ 127.54万 - 项目类别:
Microphysiology Systems Database Supplement to Tissue Chips for Precision Treatment of Catecholaminergic Polymorphic Ventricular Tachycardia-Supplement
用于精确治疗儿茶酚胺能多形性室性心动过速的组织芯片的微生理学系统数据库补充-补充
- 批准号:
10434288 - 财政年份:2020
- 资助金额:
$ 127.54万 - 项目类别:
Tissue chips for precision treatment of catecholaminergic polymorphic ventricular tachycardia
组织芯片精准治疗儿茶酚胺能多形性室性心动过速
- 批准号:
10515796 - 财政年份:2020
- 资助金额:
$ 127.54万 - 项目类别:
Tissue chips for precision treatment of catecholaminergic polymorphic ventricular tachycardia
组织芯片精准治疗儿茶酚胺能多形性室性心动过速
- 批准号:
10701063 - 财政年份:2020
- 资助金额:
$ 127.54万 - 项目类别:
Tissue chips for precision treatment of catecholaminergic polymorphic ventricular tachycardia - Diversity Supplement for Nnaemeka Justin Anyanwu
用于精准治疗儿茶酚胺能多形性室性心动过速的组织芯片 - Nnaemeka Justin Anyanwu 的多样性补充
- 批准号:
10683528 - 财政年份:2020
- 资助金额:
$ 127.54万 - 项目类别:
Multi-scale modeling of inherited pediatric cardiomyopathies
遗传性儿童心肌病的多尺度建模
- 批准号:
10228715 - 财政年份:2017
- 资助金额:
$ 127.54万 - 项目类别:
Multi-scale modeling of inherited pediatric cardiomyopathies
遗传性儿童心肌病的多尺度建模
- 批准号:
9401828 - 财政年份:2017
- 资助金额:
$ 127.54万 - 项目类别:
Multi-scale modeling of inherited pediatric cardiomyopathies
遗传性儿童心肌病的多尺度建模
- 批准号:
10469046 - 财政年份:2017
- 资助金额:
$ 127.54万 - 项目类别:
Organ on chip technology to evaluate engineered nanomaterial toxicity
评估工程纳米材料毒性的器官芯片技术
- 批准号:
9770858 - 财政年份:2016
- 资助金额:
$ 127.54万 - 项目类别:














{{item.name}}会员




