Computational Image Analysis of Renal Transplant Biopsies to Predict Graft Outcome

肾移植活检的计算图像分析以预测移植结果

基本信息

  • 批准号:
    10733292
  • 负责人:
  • 金额:
    $ 60.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-06 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary Kidney transplantation is the most effective modality for treating end stage kidney disease. It provides superior quality of life and significantly improves survival over dialysis. However, the demand for kidney transplants has surpassed the supply of usable organs. Because of this deficit, it is important to improve the outcomes of first- time transplant recipients through intelligent management, thereby optimizing donor organ allocation and reducing the need for secondary transplants. In assessing the health of a renal allograft, time is of critical importance. Being able to precisely predict delayed graft dysfunction and modifying treatment strategies accordingly would be greatly impactful in decreasing chronic rejection events. Existing clinical methods, such as the Kidney Donor Profile Index, which are based solely on donor demographics and clinical data, are minimally to moderately predictive of allograft outcomes. Further, current visual, semi-quantitative transplant biopsy scoring metrics, e.g., Banff, the Maryland Aggregate Pathology Index, and Remuzzi are often not predictive of renal graft function. Digital image analytical methods that quantify chronic changes in kidney that cannot be done visually, may offer clues to long-term allograft outcome. Therefore, to address the unmet need of intelligent renal transplant management, we propose a comprehensive multimodal framework, integrating high-resolution renal transplant biopsy digital whole-slide images (WSIs), and donor and recipient clinical, demographic, and social determinants of health data. Using this framework we will combine computer vision and explainable artificial intelligence (XAI) tools to derive autonomous diagnostic and prognostic models for data-driven, long-term management of renal allografts. As part of their preliminary work, the investigator team has developed a computational tool to quantify interstitial fibrosis and tubular atrophy, a chronicity measure in renal transplant biopsies, and demonstrated that the prediction of estimated glomerular filtration rate at a later time-point after biopsy using machine learning (ML)-derived image features outperforms those based on routine visual assessment. This tool will be expanded to incorporate a variety of additional analyses including robust segmentation of renal compartments in WSIs, leveraging pathologist guided attention to train deep-learning models, state-of-the-art transformer models for multi-task learning, and XAI to increase interoperability and accessibility of ML-derived predictions to pathologists. The performance of this pipeline to predict renal allograft function in a future time-point will be compared with existing methods used in a clinical setting as well as ML- based methods used for explainable prediction of disease progression in other areas of digital pathology. The tool will be deployed on a cloud-based platform and the usability by important stakeholders, namely, transplant renal pathologists, nephrologists, and surgeons will be studied with a goal to eventually include the tool in clinical workflows. The proposed work will be an invaluable asset for clinicians to take advantage of large collections of renal transplant biopsy WSIs and inform treatment decisions towards improving renal allograft function.
项目摘要 肾移植是治疗终末期肾病最有效的方式。提供上级 生活质量,并显著改善透析生存率。然而,对肾脏移植的需求 超过了可用器官的供应由于这一缺陷,重要的是要改善第一- 通过智能管理,为移植受者提供最佳时间,从而优化供体器官分配, 减少了二次移植的需要。在评估移植肾的健康状况时,时间是关键 重要性能够精确预测迟发性移植物功能障碍并修改治疗策略 因此,在减少慢性排斥事件方面将具有很大的影响。现有的临床方法,如 仅基于供体人口统计学和临床数据的肾脏供体概况指数, 中度预测同种异体移植结果。此外,目前的视觉,半定量移植活检评分 度量,例如,Banff、马里兰州综合病理指数和Remuzzi通常不能预测肾移植 功能数字图像分析方法,量化肾脏的慢性变化,不能在视觉上完成, 可能为同种异体移植的长期结果提供线索。因此,为了解决智能肾脏移植未满足的需求, 移植管理,我们提出了一个全面的多模式框架,整合高分辨率肾 移植活检数字全切片图像(WSIs),供体和受体的临床,人口统计学和社会 健康数据的决定因素。利用这个框架,我们将联合收割机结合计算机视觉和可解释的人工 智能(XAI)工具,用于推导数据驱动的长期自主诊断和预后模型 肾移植的管理。作为初步工作的一部分,调查小组制定了一项 一种量化肾移植慢性化指标间质纤维化和肾小管萎缩的计算工具 活组织检查,并证明预测估计肾小球滤过率在稍后的时间点后, 使用机器学习(ML)衍生图像特征的活检优于基于常规视觉的活检 考核这一工具将得到扩展,以纳入各种其他分析, WSIs中肾室的分割,利用病理学家引导的注意力来训练深度学习 模型,用于多任务学习的最先进的Transformer模型,以及用于提高互操作性和 ML衍生预测对病理学家的可访问性。该管道预测肾移植的性能 将在未来时间点的功能与临床环境中使用的现有方法以及ML- 用于数字病理学其他领域疾病进展的可解释预测的方法。的 工具将被部署在一个基于云的平台和可用性的重要利益相关者,即移植 将对肾脏病理学家、肾病学家和外科医生进行研究,目标是最终将该工具纳入临床 工作流程。拟议的工作将是一个宝贵的资产,为临床医生利用大量的收集, 肾移植活组织检查WSIs,并为改善肾移植功能的治疗决策提供信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kuang-Yu Jen其他文献

Kuang-Yu Jen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
  • 批准号:
    22KJ0334
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
  • 批准号:
    23H00770
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
  • 批准号:
    2410236
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
  • 批准号:
    23K18762
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
  • 批准号:
    900240
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Collaborative R&D
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
  • 批准号:
    10829529
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
  • 批准号:
    2346114
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
  • 批准号:
    10828588
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
  • 批准号:
    MR/X029301/1
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
  • 批准号:
    2234506
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了