Computational Image Analysis of Renal Transplant Biopsies to Predict Graft Outcome
肾移植活检的计算图像分析以预测移植结果
基本信息
- 批准号:10733292
- 负责人:
- 金额:$ 60.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-06 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgreementAllograftingAreaArtificial IntelligenceAtrophicAttentionAutomationBenchmarkingBiopsyCategoriesChronicClinicalClinical DataCollectionComputer Vision SystemsDataData AnalysesDiagnosisDiagnosticDialysis procedureDisease ProgressionEnd stage renal failureEventFeedbackFibrosisFutureGlomerular Filtration RateGoalsImageImage AnalysisInjury to KidneyIntelligenceInternetKidneyKidney TransplantationLearningMachine LearningMarylandMeasuresMethodsModalityModelingOrganOrgan DonorOutcomePathologistPathologyPatientsPatternPerformancePlayProtocols documentationQuality of lifeResearch PersonnelResolutionSemanticsSurgeonTestingTimeTrainingTransplant RecipientsTransplant SurgeonTransplantationTubular formationVascular DiseasesVisualWorkanalytical methodcloud basedcohortcomputerized toolsdata-driven modeldeep learning modeldemographicsdigitaldigital imagingdigital pathologyempowermentfield studyglomerulosclerosisgraft dysfunctiongraft functionhealth assessmenthealth dataimplantationimprovedimproved outcomeindexinginteroperabilityinterstitialkidney allograftkidney biopsymachine learning methodmulti-task learningmultimodalitynovelorgan allocationoutcome predictionpost-transplantprognostic modelrecruitsecond transplantsocial health determinantsstandard of caretooltransplant centerstreatment strategyusabilityuser-friendlyweb-based toolwhole slide imaging
项目摘要
Project Summary
Kidney transplantation is the most effective modality for treating end stage kidney disease. It provides superior
quality of life and significantly improves survival over dialysis. However, the demand for kidney transplants has
surpassed the supply of usable organs. Because of this deficit, it is important to improve the outcomes of first-
time transplant recipients through intelligent management, thereby optimizing donor organ allocation and
reducing the need for secondary transplants. In assessing the health of a renal allograft, time is of critical
importance. Being able to precisely predict delayed graft dysfunction and modifying treatment strategies
accordingly would be greatly impactful in decreasing chronic rejection events. Existing clinical methods, such as
the Kidney Donor Profile Index, which are based solely on donor demographics and clinical data, are minimally
to moderately predictive of allograft outcomes. Further, current visual, semi-quantitative transplant biopsy scoring
metrics, e.g., Banff, the Maryland Aggregate Pathology Index, and Remuzzi are often not predictive of renal graft
function. Digital image analytical methods that quantify chronic changes in kidney that cannot be done visually,
may offer clues to long-term allograft outcome. Therefore, to address the unmet need of intelligent renal
transplant management, we propose a comprehensive multimodal framework, integrating high-resolution renal
transplant biopsy digital whole-slide images (WSIs), and donor and recipient clinical, demographic, and social
determinants of health data. Using this framework we will combine computer vision and explainable artificial
intelligence (XAI) tools to derive autonomous diagnostic and prognostic models for data-driven, long-term
management of renal allografts. As part of their preliminary work, the investigator team has developed a
computational tool to quantify interstitial fibrosis and tubular atrophy, a chronicity measure in renal transplant
biopsies, and demonstrated that the prediction of estimated glomerular filtration rate at a later time-point after
biopsy using machine learning (ML)-derived image features outperforms those based on routine visual
assessment. This tool will be expanded to incorporate a variety of additional analyses including robust
segmentation of renal compartments in WSIs, leveraging pathologist guided attention to train deep-learning
models, state-of-the-art transformer models for multi-task learning, and XAI to increase interoperability and
accessibility of ML-derived predictions to pathologists. The performance of this pipeline to predict renal allograft
function in a future time-point will be compared with existing methods used in a clinical setting as well as ML-
based methods used for explainable prediction of disease progression in other areas of digital pathology. The
tool will be deployed on a cloud-based platform and the usability by important stakeholders, namely, transplant
renal pathologists, nephrologists, and surgeons will be studied with a goal to eventually include the tool in clinical
workflows. The proposed work will be an invaluable asset for clinicians to take advantage of large collections of
renal transplant biopsy WSIs and inform treatment decisions towards improving renal allograft function.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kuang-Yu Jen其他文献
Kuang-Yu Jen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
- 批准号:
22KJ0334 - 财政年份:2023
- 资助金额:
$ 60.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
- 批准号:
23H00770 - 财政年份:2023
- 资助金额:
$ 60.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
- 批准号:
2410236 - 财政年份:2023
- 资助金额:
$ 60.5万 - 项目类别:
Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 60.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
- 批准号:
900240 - 财政年份:2023
- 资助金额:
$ 60.5万 - 项目类别:
Collaborative R&D
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 60.5万 - 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
- 批准号:
2346114 - 财政年份:2023
- 资助金额:
$ 60.5万 - 项目类别:
Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
- 批准号:
10828588 - 财政年份:2023
- 资助金额:
$ 60.5万 - 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
- 批准号:
MR/X029301/1 - 财政年份:2023
- 资助金额:
$ 60.5万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
- 批准号:
2234506 - 财政年份:2023
- 资助金额:
$ 60.5万 - 项目类别:
Standard Grant