Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
基本信息
- 批准号:10730981
- 负责人:
- 金额:$ 19.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-09 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcoustic NerveAcoustic StimulationAcousticsAcuteAffectAnimalsApicalBasilar MembraneBenchmarkingCaviaCharacteristicsChronicCicatrixClinicalCochleaCochlear ImplantsCochlear implant procedureComplementComputer ModelsCoupledDataDecalcificationDetectionDevelopmentEarElectric StimulationElectrocochleographiesElectrodesEligibility DeterminationExposure toFibrosisFrequenciesFutureGoalsHair CellsHarvestHearingHearing TestsHistologyHumanHybridsImageImage AnalysisImmuneImplantInterferometryLabyrinthLeadLibrariesLinkLocationLoudnessMachine LearningMapsMeasurementMeasuresMechanicsMetabolicModelingMorphologyMusicNatureNoiseNoise-Induced Hearing LossOperative Surgical ProceduresOptical Coherence TomographyOrgan of CortiOuter Hair CellsPatientsPerformancePeriodicalsPersonsPhasePhysiologic OssificationPhysiologicalProcessProductionProsthesisQuality of lifeResearchResidual stateRodentRodent ModelScala TympaniScanningSignal TransductionSiteTechniquesTestingTissuesTraveldesignexperienceexperimental studyhearing impairmentimage reconstructionimplantationimprovedinsightmechanical behaviormechanical propertiesminimally invasivemultidisciplinaryneurosensorypreventresponsesoundspeech recognitionsuccesstoolvibration
项目摘要
Project Summary
Sound entering the cochlea induces a longitudinally propagating travelling wave along the cochlear partition
which includes the organ of Corti. The organ of Corti amplifies travelling waves via force production by outer hair
cells. Where this amplification is lost, an array of electrodes called a cochlear implant replaces sound stimulation
with electrical stimulation of the auditory nerve. Improved cochlear implants combine electrical and sound
stimulation in patients with some intact hearing. These combined implants lead to improved performance.
However, approximately half of combined cochlear implant recipients experience a loss of their remaining
hearing months after implantation. This implantation-induced hearing loss reduces speech recognition and
musicality.
Implantation-induced hearing loss may have multiple interacting causes; immune, metabolic, and mechanical.
We hypothesize that cochlear scarring (fibrosis/ossification) induced by implantation disrupts travelling wave
propagation to the site of low frequency hearing. Links between hearing loss and implant-induced scarring are
seen in rodent models, reflecting clinical findings. However, there are no direct measurements of the mechanical
consequences of cochlear implantation for low frequency hearing.
We will combine our expertise with rodent models of cochlear implantation and the use of the latest generation
of imaging interferometry – optical coherence tomography (OCT). In a bid to produce the first data of its kind, we
will use OCT vibrometry to characterize low frequency mechanical function in the cochlear apex of chronically
implanted animals. We will then produce a 3D map of the scarring inside each cochlea using OCT imaging.
Coupled with histology and machine learning powered image analysis, we will compare the extent, location and
type of scarring with organ of Corti gain, tuning, distortion, phase and group delay in each cochlea. The results of
our OCT vibrometry experiments will be interpreted by computer models of cochlear function. Experiments will also be
conducted in acutely implanted models to assess the effect of the cochlear implant upon apical mechanics
prior to scarring. Additionally, we will use a model with noise induced hearing loss prior to implantation to test the
contribution of high frequency outer hair cells to low frequency hearing performance.
Our multidisciplinary team will offer a direct insight into cochlear implant-induced hearing loss and will allow us
to test the scarring hypothesis. This project will guide avenues of research geared towards minimizing or
preventing cochlear implant-induced hearing loss, and lead to improved quality of life for the recipients of
cochlear implants.
项目摘要
进入耳蜗的声音引起沿耳蜗分隔沿着纵向传播的行波
包括Corti器官。Corti器官通过外部毛发产生的力来放大行波
细胞当这种放大作用消失时,一种被称为耳蜗植入物的电极阵列取代了声音刺激
电刺激听觉神经。改进的人工耳蜗联合收割机结合了电和声音
听力正常的患者进行刺激。这些组合的植入物导致改进的性能。
然而,大约一半的联合人工耳蜗植入者经历了他们剩余的听力损失。
在植入后几个月就有听力了这种听力损失会降低语音识别能力,
音乐性
植入引起的听力损失可能有多种相互作用的原因;免疫,代谢和机械。
我们假设植入引起的耳蜗瘢痕(纤维化/骨化)破坏了行波
传播到低频听觉部位。听力损失和植入物引起的疤痕之间的联系是
在啮齿动物模型中观察到,反映了临床发现。然而,没有直接测量的机械
人工耳蜗植入对低频听力的影响。
我们将联合收割机结合我们的专业知识与啮齿动物模型的人工耳蜗植入和使用最新一代的
光学相干断层扫描(OCT)。为了产生第一个此类数据,我们
将使用OCT振动测量来表征慢性耳蜗尖的低频机械功能,
植入动物然后,我们将使用OCT成像制作每个耳蜗内瘢痕的3D地图。
结合组织学和机器学习驱动的图像分析,我们将比较肿瘤的程度、位置和
在每个耳蜗中具有Corti器官增益、调谐、失真、相位和群延迟的瘢痕类型。的结果
我们的OCT振动测量实验将通过耳蜗功能的计算机模型来解释。实验也将
在急性植入模型中进行,以评估耳蜗植入物对心尖力学的影响
在形成疤痕之前。此外,我们将在植入前使用噪声性听力损失模型来测试
高频外毛细胞对低频听力的贡献。
我们的多学科团队将提供对人工耳蜗植入引起的听力损失的直接见解,并使我们能够
来验证疤痕假说该项目将指导研究途径,
预防人工耳蜗植入引起的听力损失,并改善人工耳蜗植入者的生活质量。
人工耳蜗
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George William Strathdee Burwood其他文献
George William Strathdee Burwood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}