Structural determinants of activity and mechanism of cationic peptide antibiotic activity against colistin-resistant bacteria
阳离子肽抗生素对粘菌素耐药菌活性的结构决定因素和机制
基本信息
- 批准号:10733264
- 负责人:
- 金额:$ 65.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAmino AcidsAnimal ModelAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic susceptibilityAntibioticsAntimicrobial EffectAntimicrobial ResistanceBacteremiaBacteriaBacterial Drug ResistanceBiophysicsChargeCircular DichroismCirculationClinicalClinical ResearchColistinCytolysisDataDevelopmentDoseEndotoxinsEngineeringErythrocytesGeneticGoalsGram-Negative BacteriaHydrophobicityIn VitroInfectionIntravenousInvestigationLeadLengthLeukocytesLibrariesLipid ALipopolysaccharidesMammalian CellMaximum Tolerated DoseMeasuresMedicalMembraneMinimum Inhibitory Concentration measurementModelingMolecularMulti-Drug ResistanceMultiple Bacterial Drug ResistanceMusOutcomePatientsPeptide AntibioticsPeptide LibraryPeptidesPeriodicityPharmaceutical PreparationsPhase II Clinical TrialsPredispositionPrevalencePropertyPseudomonas aeruginosa infectionPublic HealthResearch PersonnelResistanceResistance developmentSafetySerial PassageSeriesStructureSurface Plasmon ResonanceTestingTherapeuticTherapeutic IndexTherapeutic UsesThinkingTimeToxic effectToxicologyUnited StatesVariantWorkantibiotic designantimicrobialantimicrobial drugantimicrobial peptidebacterial resistancebactericidecell typeclinical developmentclinically significantcolistin resistancecytotoxicdefined contributiondesignemerging antibiotic resistanceexperimental studyimmunogenicityin vitro activityin vivoindexinginfectious disease treatmentintraperitonealiterative designlead candidatemulti-drug resistant pathogenmultidrug-resistant Pseudomonas aeruginosamultiple drug usenovelpeptide drugphosphoethanolaminepreclinical studypublic health relevancerational designrational functionresistance frequencyresistance mechanismresistant Klebsiella pneumoniaeresistant strainresponsestructural determinantssuccesstherapeutically effective
项目摘要
Abstract. The emergence of antibiotic resistance (AR) underscores the urgent need to develop novel
antimicrobial agents that are able to overcome current AR mechanisms. Antimicrobial peptides (AMPs) tend to
disrupt bacterial membranes regardless of resistance to traditional antibiotics. However, bacteria have also
evolved to resist the effects of AMPs by reducing (e.g., incorporation of phosphoethanolamine), not eliminating,
the net electronegative charge of lipid A, an important component of LPS targeted by AMPs. Because a
minimum electronegative charge is essential to bacterial membrane integrity, AMPs can be optimized to
overcome limited changes in LPS, the most common resistance mechanism against endogenous AMPs and
colistin. We have developed an iterative framework for rational design of engineered cationic peptide antibiotics
(PAX) optimized for broad activity against multidrug-resistant (MDR) bacteria. We used libraries of rationally
designed series of novel Trp-rich peptides differing by 2 residues at a time, 1 Val and 1 Arg to establish the
distinction between structural determinants of antimicrobial potency and those of host toxicity. As predicted,
lowest minimum inhibitory concentrations (MIC) are achieved against MDR clinical isolates without substantial
increase in red blood cell lysis or toxicity to white blood cells at maximum test concentrations. Remarkably, one
of the selected PAX (E35) demonstrates efficacy when systemically administered at 4-5mg/kg either a single
dose (MDR P. aeruginosa infection) or multiple doses (MDR Klebsiella pneumonia infection) in mice. PAX
E35 also displayed a maximum tolerated dose of 30 mg/kg compared to 12-15 mg/kg of our initial lead peptide
WLBU2 now in phase 2 clinical trial. Our iterative framework minimizes trial and error for designing PAX with
enhanced systemic efficacy against MDR bacteria. Given the success against colistin-resistant (Col-R) bacteria,
the tendency is to claim that our work is done without thinking of potential shortcomings of the current PAX.
However, there are still too many unknowns. (1) MDR bacteria have not been exposed clinically to the peptides
as they have been to colistin. Once they do, it is almost certain that resistance frequency will steadily increase.
(2) The current structural optimization is only minimal because we have not yet determined how each of the
cationic (C) and hydrophobic (H) motifs contributes to bacterial recognition and killing. Thus, it is critical to
continue this important work while some of the PAX may progress to advanced pre-clinical and clinical studies.
We propose to define the contribution of the 2 motifs to target recognition and elimination using Col-R strains
that can be passaged to evolve resistance to the current PAX. The overarching goal of this proposal is to elucidate
the molecular determinants for bacterial resistance to PAX by uncoupling the C and H motifs of PAX to allow
C/H correlation with changes in LPS structures and corresponding bactericidal activity using both col-R and
PAX-R MDR clinical isolates. Impact: we will progress from a minimal one-drug to a comprehensive one-
therapeutic class approach with the ability to design or re-design PAX based on clinical challenges.
抽象。抗生素耐药性(AR)的出现强调了开发新型抗生素的迫切需要。
因此,可以使用能够克服当前AR机制的抗微生物剂。抗菌肽(AMP)往往
破坏细菌膜,而不管对传统抗生素的耐药性如何。然而,细菌也
进化为通过减少(例如,掺入磷酸乙醇胺),而不是消除,
脂质A的净电负性电荷,脂质A是AMP靶向的LPS的重要组分。因为
最小的电负性电荷对于细菌膜完整性是必不可少的,AMP可以被优化以
克服LPS的有限变化,LPS是针对内源性AMP的最常见的抗性机制,
粘菌素我们已经开发了一个迭代框架,用于合理设计工程阳离子肽抗生素
(PAX)优化了针对多药耐药(MDR)细菌的广泛活性。我们合理地使用图书馆
设计了一系列新颖的富含Trp的肽,每次相差2个残基,1个瓦尔和1个Arg,以建立
抗微生物效力的结构决定因素与宿主毒性的结构决定因素之间的区别。正如预测的那样,
对MDR临床分离株达到最低的最低抑菌浓度(MIC),
在最大试验浓度下,红细胞溶解或对白色细胞的毒性增加。值得注意的是,一
选择的PAX(E35)中的一种在以4- 5 mg/kg或单次给药时表现出有效性。
剂量(MDR铜绿假单胞菌感染)或多次剂量(MDR肺炎克雷伯菌感染)。Pax
E35还显示出30 mg/kg的最大耐受剂量,相比之下,我们的初始先导肽为12-15 mg/kg
WLBU 2目前处于2期临床试验中。我们的迭代框架最大限度地减少了设计PAX的尝试和错误,
增强对MDR细菌的全身功效。鉴于对粘菌素耐药(Col-R)细菌的成功,
这种倾向是声称我们的工作是在没有考虑到当前PAX的潜在缺点的情况下完成的。
然而,还有太多的未知数。(1)MDR细菌尚未在临床上暴露于肽
就像他们对粘菌素一样。一旦他们这样做,几乎可以肯定的是,阻力频率将稳步上升。
(2)目前的结构优化只是最小的,因为我们还没有确定如何每个
阳离子(C)和疏水(H)基序有助于细菌识别和杀灭。因此,关键是
继续这项重要的工作,而一些PAX可能会进展到先进的临床前和临床研究。
我们建议使用Col-R菌株来定义这2个基序对靶标识别和消除的贡献
可以通过传代进化出对当前PAX的抗性。本提案的总体目标是阐明
通过解偶联PAX的C和H基序,
C/H与LPS结构变化的相关性和使用col-R和
PAX-R MDR临床分离株。影响:我们将从最小的单一药物发展到全面的药物-
具有根据临床挑战设计或重新设计PAX的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Berthony Deslouches其他文献
Berthony Deslouches的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Berthony Deslouches', 18)}}的其他基金
Determinants and Mechanisms of Efficacy of Peptide Antibiotics as Novel Sepsis Therapy
肽抗生素作为新型脓毒症治疗功效的决定因素和机制
- 批准号:
10454970 - 财政年份:2018
- 资助金额:
$ 65.39万 - 项目类别:
Determinants and Mechanisms of Efficacy of Peptide Antibiotics as Novel Sepsis Therapy
肽抗生素作为新型脓毒症治疗功效的决定因素和机制
- 批准号:
9750739 - 财政年份:2018
- 资助金额:
$ 65.39万 - 项目类别:
Determinants and Mechanisms of Efficacy of Peptide Antibiotics as Novel Sepsis Therapy
肽抗生素作为新型脓毒症治疗功效的决定因素和机制
- 批准号:
10218207 - 财政年份:2018
- 资助金额:
$ 65.39万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Continuing Grant