Fundamentals of Ligand-Protein Interactions
配体-蛋白质相互作用的基础知识
基本信息
- 批准号:10014461
- 负责人:
- 金额:$ 6.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActive SitesAldehyde ReductaseAreaBindingBinding ProteinsBinding SitesChemicalsCollaborationsComplexComputer AnalysisComputer softwareComputersCrystallizationDataData SetDatabasesDrug DesignDrug effect disorderEducational workshopEnvironmentEnzymesFranceFutureGaussian modelGoalsHourHuman PapillomavirusIndividualInternationalLigandsLightLinuxMalignant NeoplasmsMechanicsMethodologyModelingMolecular ConformationNew JerseyOccupationsPaperPharmaceutical PreparationsPhiladelphiaProcessProteinsProteomicsPublicationsPublishingResearchResolutionResourcesRunningSamplingScientistSolventsSourceStructureTimeTorsionUncertaintyUnited States National Institutes of HealthUniversitiesVacuumValidationVisitWorkX-Ray Crystallographyaqueousdata warehousedatabase structureflexibilityfree-electron laserinstrumentationmeetingsmolecular mechanicsprotein complexquantumquantum computingsmall moleculetautomertheoriesworking group
项目摘要
The conformational changes of both partners of a ligand-protein complex, the small-molecule ligand in its the protein binding site (in many cases the catalytically active site of an enzyme) are a central aspect many drug actions, as well as a crucial challenge in computational approaches to drug design. In one of the earliest publications in the this field, we showed for a small set of ligands occurring both in the Protein Data Bank (PDB) and the Cambridge Structural Database (CSD) that flexible compounds are not usually bound to a protein in their global vacuum energy conformation, and oftentimes not even in any local vacuum energy conformation. While this study used the largest set of data and best methodology available at that time, both the number of structures in either experimental database and the software and hardware resource available have since grown exponentially. We are thus revisiting this important topic with an analysis of orders of magnitudes more structures, and computations performed at a high level of computational quantum-chemical theory. Among other milestones achieved so far in this project, we have extracted all occurrences of small-molecule ligands recently made available in PDB's LigandExpo. As of May 2008, this is a set of over 350,000 distinct sets of 3D coordinates. We have added extensive annotation coming from several different sources. Using these annotations in a chain of filters, we have generated "high-quality" subsets of ligand structures of high quality and reliability numbering from just about one thousand to about 5,000 occurrences depending on the stringency applied. We have conducted high-level quantum-chemical calculations of conformational energies for these high-quality ligand sets. In the first round, vacuum energy calculations were run partly on our own Linux cluster, partly on the Biowulf cluster of the CIT, NIH. Up to a thousand CPUs were used simultaneously in this computationally massive project, with individual jobs taking from a few hours to several weeks of CPU-time. We obtained results from about 360 runs that completed successfully. These results clearly showed that the possibility for high conformational energies are fully confirmed by these quantum-chemical calculations. They were presented at the eCheminfo 2008 InterAction Meeting at Bryn Mawr, Philadelphia (13-17 October 2008) in the session on PDB Ligands: Analysing their Structure & Binding Data, chaired by Marc Nicklaus. As a result of the discussions about these issues at this session, an international group of "concerned scientists" has come together, called the Ligand Quality Working Group, which will attempt, in collaborations both informal and more structured, and by free flow of information, to attempt to at least shine a more focused light on this situation, if not improve it in various ways. To explore the possible influence of aqueous environment on ligand conformational energies - after all, vacuum is not really where drug molecules typically operate - a second round of quantum chemical calculations was conducted, employing the SCI-PCM solvent model in Gaussian 03. These runs were even more demanding in terms of computer resources than the vacuum calculations. To analyze the energetic uncertainty as a function of the positional uncertainty, which in turn is a function of the crystallographic resolution, we conducted sampling of conformations with a resolution-dependent torsion distribution centered around the crystal structure conformation at the molecular mechanics force field level. All these results and their discussion and ramifications have been published in a recent major paper (Sitzmann et al., J Chem Inf Model. 52: 739-56, 2012). The advent of ever more-powerful experimental instrumentation such as free electron lasers opens up new possibilities in answering these questions. Related to this topic is a study recently begun on tautomerism of small organic molecules, which is an important question both in chemoinformatics and databases (Project 3), efficient drug design (Projects 2 and 3), and the present project of better understanding protein-ligand interactions and the crystal structures aiding in this quest. This work is mostly being performed by Dr. Laura Guasch-Pamies. The tautomerism work is continuing with interesting results of combined experimental, quantum-chemical and chemoinformatics analysis, which have been described in papers either accepted or under review, and/or studied for further analyses. The high profile our work in this area enjoys has recently found expression in the invited chairpersonship of Dr. Nicklaus at the inaugural wwPDB/CCDC/D3R Ligand Validation Workshop, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, July 30-31, 2015. A visit of Dr. Nicklaus with well-known crystallographer and Directeur de Recherche CNRS in Strasbourg, France, in June of 2016, has laid the groundwork for exciting new research involving crustal structures of aldose reductase and other cancer- and HPV-related proteins. A number of papers reviewing the current status and the future possibilities of the field have recently been published in this project.
配体-蛋白质复合物的两个配偶体的构象变化,即小分子配体在其蛋白质结合位点(在许多情况下是酶的催化活性位点)的构象变化是许多药物作用的中心方面,也是药物设计的计算方法中的关键挑战。在这一领域最早的出版物之一中,我们发现,对于蛋白质数据库(PDB)和剑桥结构数据库(CSD)中的一小部分配体,柔性化合物通常不会以其整体真空能量构象与蛋白质结合,并且通常甚至不会以任何局部真空能量构象与蛋白质结合。虽然这项研究使用了当时最大的数据集和最好的方法,但无论是实验数据库中的结构数量还是可用的软件和硬件资源都呈指数级增长。因此,我们正在重新审视这个重要的主题,分析数量级更多的结构,并在高水平的计算量子化学理论进行计算。在该项目迄今为止取得的其他里程碑中,我们提取了PDB的LigandExpo中最近提供的所有小分子配体。截至2008年5月,这是一组超过350,000个不同的3D坐标集。我们添加了来自几个不同来源的广泛注释。在一系列过滤器中使用这些注释,我们已经生成了高质量和可靠性的配体结构的“高质量”子集,根据所应用的严格性,其数量从大约1000次到大约5,000次。我们已经进行了高层次的量子化学计算这些高品质的配体集的构象能。在第一轮中,真空能量计算部分在我们自己的Linux集群上运行,部分在CIT,NIH的Biowulf集群上运行。在这个计算量巨大的项目中,同时使用了多达1000个CPU,单个作业需要几个小时到几个星期的CPU时间。我们从成功完成的约360次运行中获得了结果。这些结果清楚地表明,高构象能量的可能性完全证实了这些量子化学计算。他们在费城Bryn Mawr举行的eCheminfo 2008年互动会议(2008年10月13日至17日)上发表了关于PDB配体的会议:分析其结构和结合数据,由Marc Nicklaus主持。由于在本届会议上对这些问题的讨论,一个由“有关科学家”组成的国际小组聚集在一起,称为配体质量工作组,该小组将通过非正式和更有组织的合作,以及通过信息的自由流动,试图至少对这种情况进行更集中的关注,如果不是以各种方式改善它的话。为了探索水环境对配体构象能的可能影响-毕竟,真空并不是药物分子通常工作的地方-使用Gaussian 03中的SCI-PCM溶剂模型进行了第二轮量子化学计算。这些运行在计算机资源方面的要求甚至比真空计算更高。为了分析作为位置不确定性的函数的能量不确定性,这反过来又是晶体学分辨率的函数,我们进行了采样的构象与分辨率相关的扭转分布集中在分子力学力场水平的晶体结构构象。所有这些结果和它们的讨论和分支已经在最近的主要论文中发表(Sitzmann等人,J Chem Inf Model. 52:739-56,2012)。自由电子激光器等更强大的实验仪器的出现为回答这些问题开辟了新的可能性。与这个主题相关的是最近开始的一项关于有机小分子互变异构的研究,这是化学信息学和数据库中的一个重要问题(项目3),有效的药物设计(项目2和3),以及目前更好地理解蛋白质-配体相互作用和晶体结构的项目。这项工作主要由Laura Guasch-Pamies博士完成。互变异构的工作正在继续与有趣的结果相结合的实验,量子化学和化学信息学分析,已被描述的论文中接受或正在审查,和/或研究进一步的分析。我们在这一领域的工作备受瞩目,最近在2015年7月30日至31日在新泽西州皮斯卡特维的罗格斯新泽西州立大学整合蛋白质组学研究中心举行的首届wwPDB/CCDC/D3 R配体验证研讨会上,Nicklaus博士应邀担任主席。2016年6月,Nicklaus博士与法国斯特拉斯堡著名晶体学家和研究中心主任CNRS进行了一次访问,为涉及醛糖还原酶和其他癌症和HPV相关蛋白质的地壳结构的令人兴奋的新研究奠定了基础。该项目最近发表了一些论文,审查该领域的现状和未来的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARC NICKLAUS其他文献
MARC NICKLAUS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARC NICKLAUS', 18)}}的其他基金
HIV Integrase Modeling and Computer-Aided Inhibitor Deve
HIV整合酶建模和计算机辅助抑制剂开发
- 批准号:
7291875 - 财政年份:
- 资助金额:
$ 6.9万 - 项目类别:
HIV Integrase Modeling and Computer-Aided Inhibitor and Microbicide Development
HIV 整合酶建模以及计算机辅助抑制剂和杀菌剂开发
- 批准号:
10702372 - 财政年份:
- 资助金额:
$ 6.9万 - 项目类别:
Large Databases of Small Molecules - Drug Development Tool and Public Resource
小分子大型数据库 - 药物开发工具和公共资源
- 批准号:
10262724 - 财政年份:
- 资助金额:
$ 6.9万 - 项目类别:
Large Databases of Small Molecules - Drug Development Tool and Public Resource
小分子大型数据库 - 药物开发工具和公共资源
- 批准号:
10703018 - 财政年份:
- 资助金额:
$ 6.9万 - 项目类别:
HIV Integrase Modeling and Computer-Aided Inhibitor Development
HIV 整合酶建模和计算机辅助抑制剂开发
- 批准号:
7965392 - 财政年份:
- 资助金额:
$ 6.9万 - 项目类别:
Large Databases of Small Molecules - Drug Development Tool and Public Resource
小分子大型数据库 - 药物开发工具和公共资源
- 批准号:
10926595 - 财政年份:
- 资助金额:
$ 6.9万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 6.9万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 6.9万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 6.9万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 6.9万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 6.9万 - 项目类别:
Discovery Grants Program - Individual