Machine Learning-Based Adaptation of Data Sampling and Reconstruction for Efficient Dynamic MRI

基于机器学习的数据采样和重建适应高效动态 MRI

基本信息

  • 批准号:
    10705033
  • 负责人:
  • 金额:
    $ 18.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-30 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Magnetic resonance imaging (MRI) is essential for the detection and diagnosis of diseases. Clinical MRI scanners use fixed sequential data sampling patterns with long acquisition times, and employ nonadaptive reconstruction algorithms to generate images. The acquisitions are not usually tailored for the specific clinical task and patient characteristics, leading to sub-optimal images; they are often low-resolution, blurry, or contain errors that can reduce their diagnostic efficacy. Dynamic imaging applications, in which many images must be captured quickly to depict the motion of organs such as the heart, tend to suffer the most from these ill-effects. We propose to replace the conventional dynamic MRI acquisitions with a machine learning-based acquisition system, where the data sampling is efficiently optimized together with the reconstruction approach and task prediction, for optimized image quality and clinical task performance. First, we will explore and compare different ways of learning fast sampling of MRI frames to optimize image reconstruction quality metrics using large public data sets and current sophisticated (iterative) reconstruction algorithms. We will as- certain the sampling learning strategies that achieve the best image reconstruction quality at high data undersampling factors. Second, we will further extend machine learning throughout the MRI pipeline and develop approaches for joint adaptation of the data acquisition and image reconstruction and finally the task (e.g., quantification task) predictor as well. A key approach will use highly undersampled initial acquisitions (of current frame) and/or past (frame) data as input to the learned acquisition model to rapidly predict a patient- and frame-adaptive optimized sampling pattern. Then the samples from the scanner will be used to rapidly produce machine-learned reconstructions followed by task predictions. Particularly, for dynamic MRI, the temporal information from preceding images (frames) will be effectively incorporated and exploited in the proposed machine-learned models to drive efficient on-the-fly adaptive acquisitions and reconstruc- tions. We propose the mathematical formulations and algorithmic framework to accomplish these goals. The developed learning-based methods will be comprehensively evaluated and cross-compared in terms of image quality metrics (e.g., root mean squared error) and dynamic cardiac MRI task performance (ejection fraction estimation) at several undersam- pling or acceleration rates, and benchmarked using existing data sets as well as using newly collected cardiac MRI data. The development of smart imaging technologies that infuse learning across the imaging pipeline could enable rapid and effective task-driven adaptive imaging for dynamic cardiac MRI and related applications. Such a machine-learning MRI system could potentially improve clinical diagnosis and treatment, by helping enable the imaging system and acquisition to adapt in real-time to optimally detect and image various features at high resolution. Our goal in this project is to conduct the initial comprehensive studies to determine and analyze the potential, robustness, and algorithm behavior of the proposed machine learning dynamic MRI framework and techniques.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saiprasad Ravishankar其他文献

Saiprasad Ravishankar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saiprasad Ravishankar', 18)}}的其他基金

Machine Learning-Based Adaptation of Data Sampling and Reconstruction for Efficient Dynamic MRI
基于机器学习的数据采样和重建适应高效动态 MRI
  • 批准号:
    10453232
  • 财政年份:
    2022
  • 资助金额:
    $ 18.86万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 18.86万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 18.86万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 18.86万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 18.86万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 18.86万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 18.86万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 18.86万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 18.86万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 18.86万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.86万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了