Molecular Regulation of a Transcriptionally Poised State in Neurons and its Role in Learning
神经元转录平衡状态的分子调节及其在学习中的作用
基本信息
- 批准号:10704696
- 负责人:
- 金额:$ 13.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-14 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAnimal BehaviorAnimalsBehaviorBehavioralBindingBiochemicalBiological AssayBrainBrain DiseasesCalciumCalcium ChannelCalcium SignalingCell NucleusCellsCo-ImmunoprecipitationsCognition DisordersComplexConfocal MicroscopyDataDependenceDependovirusDissociationEnvironmentEnzymesEventFacultyFluorescent in Situ HybridizationGene ActivationGene ExpressionGenesGenetic TranscriptionGrantHexamethylene BisacetamideHippocampusHourHumanImmediate-Early GenesImpairmentIn Situ HybridizationIntellectual functioning disabilityK-Series Research Career ProgramsLearningLengthLinkMammalsMemoryMentorsMessenger RNAMolecularMood DisordersMusNeuronsNuclearOperative Surgical ProceduresPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPositive Transcriptional Elongation Factor BProcessProcessed GenesProtein DephosphorylationProteinsRNARNA Polymerase IIRefractoryRegulationResearch SupportRoleScheduleSignal PathwaySignal TransductionStimulusTestingTimeTrainingTranscriptTranscription ElongationTranscription InitiationTranscriptional RegulationTranslationsWritingbehavior testbrain dysfunctioncareercell typecognitive processexperimental studygene inductionimmunocytochemistryinducible gene expressionknock-downnoveloverexpressionpharmacologicpromoterprotein complexresponseskillstherapeutic targettimeline
项目摘要
PROJECT SUMMARY/ABSTRACT
Rapid and transient induction of gene expression in neurons is necessary for memory formation. Genes
that are activated in the brain in response to stimuli are regulated by the release of a poised transcriptional
state, where RNA polymerase II (RNAP2) pauses just downstream of the gene promoter after initiating
transcription. When calcium-dependent signaling cascades are triggered, the RNAP2 pause is released. This
release allows RNAP2 to elongate across the length of the gene, and messenger RNA (mRNA) transcripts are
generated. There is a transcriptional refractory period that lasts for hours after a stimulus when neurons are
transcriptionally unresponsive to subsequent stimuli that may be linked to the time it takes to reset poised
RNAP2. This period of dampened transcriptional response may explain the phenomenon where animals that
have little time between training sessions do not learn as well as animals with more spaced out training
session schedules, despite total training time being equal between groups. Preliminary experiments point to
Hexamethylene bisacetamide inducible protein 1 (HEXIM1) as a critical factor for setting up and resetting the
poised state in neurons due to its ability to sequester the positive transcription elongation factor b (P-TEFb)
protein complex, which is responsible for releasing the RNAP2 transcriptional pause. While other regulators of
P-TEFb have been linked to human cognitive diseases including intellectual disability, Alzheimer’s, mood
disorders, and others, very little is known about HEXIM1 in the brain.
The central hypothesis of this project is that suppression of P-TEFb by HEXIM1 in neurons is required for
RNAP2 to set up a poised state so a burst of gene expression can be induced in response to a stimulus, and
that while the poised state is getting set up following a transcriptional burst, learning is impaired. I will test this
hypothesis with three specific aims. Aim 1 will explore the regulation of the P-TEFb/HEXIM1 complex by
calcium channels to identify which memory-associated calcium signaling pathways impact P-TEFb activity.
Molecular associations between P-TEFb and HEXIM1, and their dependence on calcium-associated
phosphorylation events will be tested using biochemical assays in primary neuron cultures. Aim 2 will test how
RNAP2 cycles through a set of steps (poise, elongate, disengage, then poise again) that dictate levels of gene
inducibility following neuronal depolarization. Confocal microscopy, immunocytochemistry, and florescence in
situ hybridization will be combined to ascertain the association of inducible genes with nuclear
subcompartments in containing poised, elongating, and inactive RNAP2 during and after neuronal stimulation.
Aim 3 will probe the role of HEXIM1 in memory and determining the rate of learning. Behavioral tests will be
conducted in mice after knockdown or overexpression of the Hexim1 gene in the hippocampus. This career
development award will further develop the translation of my skillsets in studying transcriptional regulation
mechanisms to the study of learning and memory.
项目概要/摘要
神经元中基因表达的快速和瞬时诱导对于记忆形成是必要的。基因
大脑中响应刺激而被激活的神经元,是通过释放稳定的转录因子来调节的
状态,其中 RNA 聚合酶 II (RNAP2) 在启动后暂停在基因启动子下游
转录。当钙依赖性信号级联被触发时,RNAP2 暂停被释放。这
释放使 RNAP2 能够延长基因的长度,并且信使 RNA (mRNA) 转录物
生成的。当神经元受到刺激后,有一个转录不应期持续数小时。
对后续刺激的转录反应迟钝,这可能与重置平衡所需的时间有关
RNAP2。这段转录反应减弱的时期可以解释动物
训练之间的时间很短,训练间隔时间较长的动物学习效果不佳
尽管各组之间的总训练时间相同,但训练计划却有所不同。初步实验表明
六亚甲基双乙酰胺诱导蛋白 1 (HEXIM1) 作为建立和重置
由于其能够隔离正转录延伸因子 b (P-TEFb),神经元处于平衡状态
蛋白质复合物,负责释放 RNAP2 转录暂停。而其他监管机构
P-TEFb 与人类认知疾病有关,包括智力障碍、阿尔茨海默病、情绪障碍
疾病和其他疾病,人们对大脑中的 HEXIM1 知之甚少。
该项目的中心假设是,神经元中的 HEXIM1 抑制 P-TEFb 是
RNAP2 建立平衡状态,以便响应刺激而诱导基因表达爆发,并且
当转录爆发后建立平衡状态时,学习就会受到损害。我会测试这个
具有三个具体目标的假设。目标 1 将探索 P-TEFb/HEXIM1 复合物的调节
钙通道来识别哪些与记忆相关的钙信号通路影响 P-TEFb 活性。
P-TEFb 和 HEXIM1 之间的分子关联及其对钙相关的依赖性
将使用原代神经元培养物中的生化测定来测试磷酸化事件。目标 2 将测试如何
RNAP2 通过一系列决定基因水平的步骤(平衡、伸长、脱离、然后再次平衡)循环
神经元去极化后的诱导性。共聚焦显微镜、免疫细胞化学和荧光
原位杂交将结合以确定诱导基因与核的关联
在神经元刺激期间和之后,亚区室含有平衡、伸长和失活的RNAP2。
目标 3 将探讨 HEXIM1 在记忆和确定学习速率中的作用。行为测试将
在小鼠海马区 Hexim1 基因敲低或过度表达后进行。这个职业
发展奖将进一步发展我研究转录调控的技能
研究学习和记忆的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Celeste Brittany Greer其他文献
Celeste Brittany Greer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Celeste Brittany Greer', 18)}}的其他基金
Molecular Regulation of a Transcriptionally Poised State in Neurons and its Role in Learning
神经元转录平衡状态的分子调节及其在学习中的作用
- 批准号:
10591307 - 财政年份:2022
- 资助金额:
$ 13.63万 - 项目类别:














{{item.name}}会员




