In Vitro Liver Models to Investigate the Progression of Liver Fibrosis
用于研究肝纤维化进展的体外肝脏模型
基本信息
- 批准号:10016367
- 负责人:
- 金额:$ 9.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2021-09-13
- 项目状态:已结题
- 来源:
- 关键词:Alcoholic Liver DiseasesAnimal ModelAntineoplastic AgentsAreaBiochemicalBiologyBiomimeticsCell CommunicationCell physiologyCellsCharacteristicsChronicChronologyCirrhosisClinicalClinical ResearchCoculture TechniquesCollagenCommunicationCuesDevelopmentDiagnosisDiseaseDisease ProgressionEndothelial CellsEngineeringEnvironmentEtiologyExtracellular MatrixExtracellular Matrix ProteinsFibrosisGelGenesGoalsHealth Care CostsHepaticHepatic Stellate CellHepatitis BHepatitis CHepatocyteHumanIn VitroKupffer CellsLaboratoriesLamininLigandsLiverLiver FibrosisLiver diseasesMaintenanceMechanicsMediatingModelingMolecularNebraskaParticipantPeptidesPhysiologicalPlayPopulationRoleSignal TransductionSignaling MoleculeStagingSystemToxicologyVariantVirus DiseasesWorkchronic liver diseasecostdensityin vitro Modelin vivoinnovationinsightinterdisciplinary approachliver functionliver injuryliver metabolismnanofibernon-alcoholic fatty liver diseasenonalcoholic steatohepatitisresponsescreeningstellate celltherapeutic biomarkertreatment response
项目摘要
ABSTRACT
Liver fibrosis, which results from chronic liver damage in conjunction with the accumulation of extracellular
matrix (ECM) proteins, is characteristic of several chronic liver diseases. Dynamic changes to the liver
microenvironment (LME) are widely recognized as a critical participant in liver fibrosis progression and
therapeutic responses. LME components, including interactions between parenchymal (hepatocytes) and non-
parenchymal cells (liver sinusoidal endothelial cells [LSECs], hepatic stellate cells, kupffer cells), signaling
molecules (ligands-collagen, laminin), and mechanical cues from ECM, have been implicated in the
progression of liver fibrosis. Stellate cells activation is the hallmark of liver fibrosis; however, the effect on
hepatocytes and LSECs function has not been extensively understood. Also, the mechanisms by which the
LME components regulate liver function and various signaling cascades are poorly understood, thus limiting
the development of optimal diagnosis and treatment regimes for liver diseases (e.g., alcoholic liver disease,
nonalcoholic fatty liver disease, non-alcoholic steatohepatitis, and hepatitis B and C). Therefore, there is a
critical need to develop in vitro models that simulate the dynamic LME components and effectively study their
role in liver fibrosis. To study the direct effects of LME on cell signaling, it is imperative to use in vitro liver
models to simulate the fundamental complexity and dynamism of liver fibrosis and to achieve greater
translational validity. The goal of this application is to use a multidisciplinary approach to develop three
independent in vitro liver models to study how different LME components (hepatocytes-LSEC interactions,
ECM stiffness, ligand type and density) regulate hepatocyte and LSEC function and what role these LME
components play in the progression of liver fibrosis. The specific aims of the proposed study are to: 1)
investigate the effect of hepatocytes-LSEC interaction(s) on hepatic function, 2) investigate how variation in
stiffness alters hepatic cell function, and 3) determine the role of ligand type/density in regulating liver cell
function. This work will provide a significant advancement in the ability to utilize in vitro liver models to
accurately describe the liver function and metabolism in normal versus diseased states, and especially how the
LME regulate the development and maintenance of liver function. Importantly, this model is innovative as it
will chronologically emulate the fibrosis stage, is similar to clinical conditions, and boasts an environment that
is more controlled and systematic than animal models. This project is expected to have a progressive impact
on the study of liver fibrosis and related fields because the availability of a liver model that retains LME will
facilitate understanding of the molecular mechanisms that underlie LME activities in mechanisms critical for the
maintenance of liver biology.
抽象的
肝纤维化是由慢性肝损伤和细胞外毒素积累引起的
基质(ECM)蛋白是多种慢性肝病的特征。肝脏的动态变化
微环境(LME)被广泛认为是肝纤维化进展的关键参与者
治疗反应。 LME 组成部分,包括实质(肝细胞)和非细胞之间的相互作用
实质细胞(肝窦内皮细胞 [LSEC]、肝星状细胞、库普弗细胞)、信号传导
分子(配体-胶原蛋白、层粘连蛋白)和 ECM 的机械信号,与
肝纤维化的进展。星状细胞活化是肝纤维化的标志;然而,影响
肝细胞和 LSEC 的功能尚未得到广泛了解。此外,
LME 成分调节肝功能,并且对各种信号级联反应知之甚少,因此限制了
开发肝脏疾病的最佳诊断和治疗方案(例如酒精性肝病、
非酒精性脂肪肝、非酒精性脂肪性肝炎以及乙型和丙型肝炎)。因此,有一个
迫切需要开发模拟动态 LME 成分并有效研究其成分的体外模型
在肝纤维化中的作用。为了研究LME对细胞信号传导的直接影响,必须使用体外肝脏
模型来模拟肝纤维化的基本复杂性和动态性,并实现更大的目标
翻译效度。该应用程序的目标是使用多学科方法来开发三个
独立的体外肝脏模型来研究不同的 LME 成分(肝细胞 - LSEC 相互作用,
ECM 硬度、配体类型和密度)调节肝细胞和 LSEC 功能以及这些 LME 的作用
成分在肝纤维化的进展中发挥作用。拟议研究的具体目标是:1)
研究肝细胞-LSEC 相互作用对肝功能的影响,2) 研究肝细胞与 LSEC 相互作用的变化如何
硬度改变肝细胞功能,3) 确定配体类型/密度在调节肝细胞中的作用
功能。这项工作将在利用体外肝脏模型的能力方面取得重大进展
准确地描述正常状态与患病状态下的肝功能和代谢,特别是如何
LME 调节肝功能的发育和维持。重要的是,这种模式具有创新性,因为它
将按时间顺序模拟纤维化阶段,与临床状况相似,并拥有一个环境
比动物模型更具控制性和系统性。该项目预计将产生积极影响
肝纤维化及相关领域的研究,因为保留 LME 的肝脏模型的可用性将
促进对 LME 活动背后的分子机制的理解,这些机制对 LME 至关重要
维持肝脏生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srivatsan Kidambi其他文献
Srivatsan Kidambi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srivatsan Kidambi', 18)}}的其他基金
In Vitro Liver Models to Investigate the Progression of Liver Fibrosis
用于研究肝纤维化进展的体外肝脏模型
- 批准号:
8813085 - 财政年份:
- 资助金额:
$ 9.98万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




