Production Of HIV And HIV Related Proteins For Structural Studies

用于结构研究的 HIV 和 HIV 相关蛋白的生产

基本信息

项目摘要

In uninfected cells, RNA is transcribed from DNA, processed, and then transported out of the nucleus and translated into protein. In cells infected with HIV-1, the viral RNA genomes must be exported out of the nucleus without being processed so they can be packaged into new viral particles. To do this the cell must bind its own RNA genome from among the host RNA in the nucleus. This is achieved using the HIV-1 Rev protein that recognizes a Rev response element (RRE) in the viral RNA. Once bound to RRE, Rev self-associates and binds other host proteins, forming a multiprotein-RNA complex that is exported from the nucleus. Our current studies are directed at describing the molecular details of this complex. In addition to contributing fundamental information on the mechanism of viral replication, these studies may highlight points of vulnerability that may be suitable targets for therapeutic intervention including Rev itself. A picture of how Rev binds to RRE has come from our previous structural studies of both Rev and the RRE. The structure of the N-terminal half of dimeric Rev (the region involved in RNA interaction) was solved for first time by using an antibody fragment (Fab) as a crystallization chaperone. The RRE RNA forms an A shape with one leg shorter than the other. The legs are about 55 Angstrom part and position the known binding sites for Rev on either arm of the A. The higher affinity binding site is on the lower part of the short arm and the lower affinity site is on the lower part of the longer arm, placing them about 55 Angstrom from each other. This spacing matches the interaction domains of the Rev dimer that are also about 55 Angstrom apart. Once bound to RRE, Rev oligomerizes forming a complex that engages with the host nuclear export machinery. The oligomerization of Rev on RRE is essential for formation of an active nuclear export complex. To study this protein association, filaments were generated from the soluble Rev dimers and their structure was determined by high resolution electron microscopy incorporating X-ray data from the N-terminal domain of Rev dimers. Our data revealed a third interface between Rev which offers an explanation for how the arrangement of Rev subunits adapts to the A-shaped architecture of the RRE in the export-active complexes. Also, the structures contained additional density indicating that C-terminal domains (CTD) become partially ordered in the context of filaments. This is the first time structural information on the Rev CTD has been acquired as this domain is disordered in the crystals used for X-ray determinations. Further studies are required to determine in more detail the structure of the export-competent ensemble to expand our understanding of HIV-1 Rev's key role in the nuclear export of viral mRNA. We have focused first on Rev RNA interactions. Using a shortened and non-polymerizing form of Rev that incorporates amino acid residues 1-93 (wild type Rev is 1-115) and is further stabilized with a single chain variable fragment (scFv) antibody, we have prepared complexes with various RNA preparations corresponding to regions of the RRE. Also we have used RNA aptamers, which are RNAs that fold into 3-dimensional conformations that bind to their targets (in this case Rev). Aptamers that bind with higher affinity than Rev-binding sites on RRE have potential anti-HIV activity. We have recently determined a high resolution structure by X-ray crystallography of Rev with a high affinity binding aptamer. In this structure, dimeric Rev bridges two discontinuous aptamers, suggesting when it binds to RRE the Rev dimer is binding two RNA sequences co-localized by the RNA conformation. Using the Rev 1-93 - scFv as a proven crystallization platform we are extending structural studies to solve interactions with other high affinity aptamers. We are also studying other Rev complexes including with the nucleosome assembly protein 1 (Nap-1) which is a major histone chaperone involved in chromatin formation. Nap-1 binds to Rev and appears to mediate nuclear export of Rev. The structure of Nap-1 in complex with Rev has been solved at low resolution by X-ray crystallography and shows that Nap-1 forms a tetramer of dimers. Attempts to increase the resolution are being made by cryo-EM analysis. In a similar manner, Rev interactions with B23/nucleophosmin are of great interest. B23 has diverse molecular functions including roles in nucleo-cytoplasmic trafficking. As B23 is also targeted by a number of other viral proteins, the structural analyses of its binding sites may lead to novel anti-viral drugs. We have made crystals of complexes of B23 with Rev that diffract weakly but at high resolution. Further structural analysis by cryo-EM is planned. The antibody fragment (Fab) used for stabilizing Rev for structural studies was derived from a phage display antibody library. This chimeric antibody (human framework and rabbit variable domains), expressed in bacteria, was humanized and was effective by binding to Rev with a very high affinity, thereby preventing its oligomerization. In previous work we showed that this antibody had anti-HIV-1 activity. We also showed that cyclic peptides (up to 12 amino acids long) from the antibody variable regions (CDRs) could bind to Rev but we have not yet shown whether they also have anti-HIV-1 activity. In addition, we are attempting to co-crystallize the peptides with Rev in order to obtain high-resolution structures of the complexes, which may help design or model low-molecular weight mimics with improved (stronger) binding to Rev. In a parallel approach to targeting Rev, we are using the fact that polymerization or self-association of Rev is required for function and hence is a target for drug screening. As a first step we are developing assays that can be used to measure Rev self-association and then applied to high-throughput screening where compounds that block Rev-Rev interactions can be rapidly identified. To develop robust assay we have engineered Rev to include site-specific cysteine residues for introducing site -specific fluorescent probes, which will allow sensitive monitoring.
在未感染的细胞中,RNA从DNA转录,加工,然后运输出细胞核,翻译成蛋白质。在被HIV-1感染的细胞中,病毒RNA基因组必须不经加工就被输出出细胞核,这样它们才能被包装成新的病毒颗粒。要做到这一点,细胞必须从细胞核中的宿主RNA中结合自己的RNA基因组。这是通过识别病毒RNA中的Rev应答元件(RRE)的HIV-1 Rev蛋白实现的。一旦与RRE结合,Rev就会自我结合并结合其他宿主蛋白,形成从细胞核输出的多蛋白- rna复合物。我们目前的研究旨在描述这种复合物的分子细节。除了提供关于病毒复制机制的基本信息外,这些研究还可能突出易感性的点,这些易感性可能是包括Rev本身在内的治疗干预的合适靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL T WINGFIELD其他文献

PAUL T WINGFIELD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL T WINGFIELD', 18)}}的其他基金

STRUCTURE/FUNCTION OF HIV/SIV ENVELOPE TRANSMEMBRANE GLYCOPROTEIN GP41
HIV/SIV 包膜跨膜糖蛋白 GP41 的结构/功能
  • 批准号:
    6289042
  • 财政年份:
  • 资助金额:
    $ 92.68万
  • 项目类别:
Structure And Assembly Of The Hepatitis B Nucleocapsid
乙型肝炎核衣壳的结构和组装
  • 批准号:
    6823097
  • 财政年份:
  • 资助金额:
    $ 92.68万
  • 项目类别:
Structure/function--HIV/SIV EnvelopeTransmembrane Gp41
结构/功能--HIV/SIV包膜跨膜Gp41
  • 批准号:
    7007430
  • 财政年份:
  • 资助金额:
    $ 92.68万
  • 项目类别:
Structure/Function of HIV/SIV Envelope Transmembrane Glycoprotein Gp41
HIV/SIV 包膜跨膜糖蛋白 Gp41 的结构/功能
  • 批准号:
    7964901
  • 财政年份:
  • 资助金额:
    $ 92.68万
  • 项目类别:
Structure And Assembly Of The Hepatitis B Nucleocapsid Protein
乙型肝炎核衣壳蛋白的结构和组装
  • 批准号:
    7964902
  • 财政年份:
  • 资助金额:
    $ 92.68万
  • 项目类别:
Structure And Assembly Of The Hepatitis B Nucleocapsid Protein
乙型肝炎核衣壳蛋白的结构和组装
  • 批准号:
    8746496
  • 财政年份:
  • 资助金额:
    $ 92.68万
  • 项目类别:
Structure/Function of HIV/SIV Envelope Transmembrane Glycoprotein Gp41
HIV/SIV 包膜跨膜糖蛋白 Gp41 的结构/功能
  • 批准号:
    8344709
  • 财政年份:
  • 资助金额:
    $ 92.68万
  • 项目类别:
Structure And Assembly Of The Hepatitis B Nucleocapsid P
乙型肝炎核衣壳 P 的结构和组装
  • 批准号:
    6680169
  • 财政年份:
  • 资助金额:
    $ 92.68万
  • 项目类别:
Production Of HIV And HIV Related Proteins For Structura
用于 Structura 的 HIV 和 HIV 相关蛋白的生产
  • 批准号:
    6680165
  • 财政年份:
  • 资助金额:
    $ 92.68万
  • 项目类别:
Production Of HIV And HIV Related Proteins For Structural Studies
用于结构研究的 HIV 和 HIV 相关蛋白的生产
  • 批准号:
    8559288
  • 财政年份:
  • 资助金额:
    $ 92.68万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 92.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 92.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 92.68万
  • 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 92.68万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 92.68万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 92.68万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 92.68万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 92.68万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 92.68万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 92.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了