Hepatocyte-targeted somatic-cell genetic complementation in mice
小鼠肝细胞靶向体细胞遗传互补
基本信息
- 批准号:10017365
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcetaminophenActive SitesAgingAnimalsAntioxidantsArsenicBiocompatible MaterialsCRISPR screenCRISPR/Cas technologyCandidate Disease GeneCellsCisplatinClustered Regularly Interspaced Short Palindromic RepeatsComplementConsumptionCultured CellsDevelopmentDiseaseDisulfidesEnzymesExposure toFamily memberGenesGeneticGenetic ModelsGlutathioneGlutathione ReductaseHealthHepaticHepatocyteHomeostasisIn SituInflammatoryKnock-outLiverLogisticsMalignant NeoplasmsMammalian CellMammalsMasksMediatingMessenger RNAMetabolicMetalsMethionineMicrobeMineralsModelingMolecularMusN-acetyl-4-benzoquinoneimineNADPNerve DegenerationNull LymphocytesNutrientOrganic ChemicalsOxidation-ReductionOxidative StressOxidoreductasePathway interactionsPatientsPeroxidasesPharmaceutical PreparationsPlantsProcessReperfusion TherapyResearchResistanceRibonucleotide ReductaseRoleSomatic Cell GeneticsSourceSulfurSupporting CellSystemTXN geneTestingTherapeuticToxic Environmental SubstancesToxicant exposureToxinUncertaintyanimal model developmentbasecell typeelectron donorgenome editinggenome wide screenglutaredoxinimprovedinnovationliver ischemiamethionine sulfoxide reductasemicrobialmouse modelnovelnovel strategiesperoxiredoxinpreventredoxinstem cellsthioredoxin reductase 1transcriptomevector-bornewhole genome
项目摘要
Summary/Abstract
Disulfide reductase-driven antioxidant defenses prevent molecular damage that can contribute to inflammatory
diseases, neurodegeneration, stem cell depletion, aging, and cancers. NADPH, generated from NADP+ using
energetic nutrients, is the electron-donor for most biosynthetic, homeostatic, and cytoprotective reductions,
but only two enzymes can use NADPH to reduce cytosolic disulfides: thioredoxin reductase-1 (TrxR1) and
glutathione reductase (Gsr). Electrophilic toxins can coincidentally inhibit both the TrxR1 and Gsr pathways in
liver. These include environmental metal/metalloids (e.g., arsenic), drugs (e.g., cisplatin) or drug metabolites
(e.g., NAPQI from acetaminophen), and many organic toxins from plants or microbes. Mice with liver-specific
disruptions of both TrxR1+Gsr (TrxR1/Gsr-null), which provide a useful genetic model for such situations, have
revealed surprising robustness in the disulfide reductase systems, including a previously unrecognized
methionine (Met)-fueled NADPH-independent system that sustains redox homeostasis in TrxR1/Gsr-null livers.
These models reveal that mammals, unlike microbes, have unexpected sources and distribution-
mechanisms to supply disulfide reducing power when the canonical pathways are compromised. We
hypothesize that realigned metabolic activities and expanded functionality of Trx- and glutaredoxin (Grx)-family
members provides support for essential reductase activities, when needed. A better understanding of these
systems promises to provide improved therapeutic avenues for rescuing liver- and patient-health following
severe oxidative stress or toxic exposures. Testing this hypothesis, however, will require development of
innovative approaches to detect the putative complementary activities.
Here we propose two specific aims that will use a novel CRISPR/Cas9 gene disruption approach in genetically
modified mouse livers to (i) define the respective roles of Grx family members in distributing reducing power
when Trx1 is disrupted and (ii) perform an innovative screen to identify genes supporting redox homeostasis
upon co-disruption of TrxR1 and Gsr.
Synopsis: This project will use innovative approaches for genome-editing-enhanced somatic cell genetic
complementation in mouse liver to better define the pathways that support disulfide reductase systems when
the canonical pathways become compromised. Consistent with PA-16-141: “Development of animal models
and related biological materials for research (R21)”, this project develops a new approach for performing
genetic complementation studies in mouse hepatocytes in situ.
摘要/摘要
二硫化物还原酶驱动的抗氧化剂防御系统可防止导致炎症的分子损伤
疾病、神经退化、干细胞枯竭、衰老和癌症。NADPH,使用NADP+生成
高能营养素是大多数生物合成、动态平衡和细胞保护还原的电子供体,
但只有两种酶可以利用NADPH还原胞液中的二硫化物:硫氧还蛋白还原酶-1(TrxR1)和
谷胱甘肽还原酶(GSR)。亲电毒素可同时抑制TrxR1和GSR信号通路
肝脏。这些包括环境金属/类金属(如砷)、药物(如顺铂)或药物代谢物。
(例如,扑热息痛的NAPQI),以及来自植物或微生物的许多有机毒素。肝脏特异的小鼠
TrxR1+GSR(TrxR1/GSR-空)的中断为这种情况提供了有用的遗传模型,具有
在二硫化物还原酶系统中发现了令人惊讶的健壮性,包括以前未被识别的
蛋氨酸(Met)驱动的NADPH非依赖性系统,在TrxR1/GSR阴性肝脏中维持氧化还原动态平衡。
这些模型表明,哺乳动物与微生物不同,它们有意想不到的来源和分布--
当正则途径受损时,提供二硫化物还原动力的机制。我们
重新调整Trx-和GRX家族的代谢活动和扩展功能的假设
成员在需要时为基本的还原酶活动提供支持。更好地理解这些
系统承诺为挽救肝脏和患者健康提供更好的治疗途径
严重的氧化应激或中毒暴露。然而,测试这一假设将需要开发
发现假定的补充活动的创新方法。
在这里,我们提出了两个具体的目标,将使用一种新的CRISPR/Cas9基因破坏方法在遗传学上
修饰小鼠肝脏以(I)定义GRX家族成员在分配还原能力中的各自角色
当Trx1被破坏时以及(Ii)进行创新筛选以识别支持氧化还原动态平衡的基因
当TrxR1和GSR共同中断时。
简介:该项目将使用基因组编辑增强体细胞遗传学的创新方法
在小鼠肝脏中的互补作用,以更好地确定支持二硫化物还原酶系统的途径
规范路径变得不堪一击。与PA-16-141一致:“动物模型的发展
和相关生物材料用于研究(R21),该项目开发了一种新的方法来执行
小鼠肝细胞遗传互补的原位研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EDWARD E SCHMIDT其他文献
EDWARD E SCHMIDT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EDWARD E SCHMIDT', 18)}}的其他基金
Biopsy and Freezing of Later-stage Mouse Blastocysts Using the Dracula Pipette
使用 Dracula 移液器对后期小鼠囊胚进行活检和冷冻
- 批准号:
8455935 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Initiation, persistence, and progression of hepatocellular carcinoma
肝细胞癌的发生、持续和进展
- 批准号:
8069940 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
Initiation, persistence, and progression of hepatocellular carcinoma
肝细胞癌的发生、持续和进展
- 批准号:
7963702 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




