Engineering a smart CAR platform for human regulatory T cells
为人类调节性 T 细胞设计智能 CAR 平台
基本信息
- 批准号:10021758
- 负责人:
- 金额:$ 35.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2021-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAntigen TargetingAntigensAutoimmune DiseasesBindingBiologyClinicClinical TrialsComplementDataDetectionDiseaseEngineeringGraft RejectionHumanImmune responseKnowledgeLeadLeucine ZippersLogicMalignant NeoplasmsMass Spectrum AnalysisModelingPatientsPhosphorylationPlayPositioning AttributePreparationProteomicsPublic HealthPublishingReagentReceptor SignalingRegulatory T-LymphocyteRoleSafetySignal PathwaySignal TransductionSpecificitySystemT cell therapyT-LymphocyteTestingTreg therapyWorkchimeric antigen receptorclinically relevantcombatcombinatorialdesignengineered T cellsextracellulargraft vs host diseasehumanized mouseimmune activationimprovedin vitro testingin vivomouse modelneoplastic cellnovelphosphoproteomicspreclinical studyprogramsreceptorresponsesuccesssynthetic biologytumor
项目摘要
T lymphocytes expressing a chimeric antigen receptor (CAR) targeting antigens on tumor cells have
demonstrated tremendous promise in combating cancer, with two therapies receiving FDA-approval in the last
year. In addition to immune activation, CARs can suppress immune responses in an antigen-dependent
manner when expressed on regulatory T lymphocytes (Tregs). CAR Tregs have shown promise in treating
autoimmune disease, graft vs. host disease, and transplant rejection in preclinical studies with improved
activity and fewer off-target effects than current treatments. As such, advances in the safety and specificity of
CAR Treg therapy could have a huge beneficial impact to millions of patients worldwide.
An obstacle facing CAR Treg therapy is that the current CAR designs found in the clinic can only target a
single antigen with limited specificity, a major concern in Treg therapy. Additionally, these current designs are
too rigid to facilitate optimization. To address these issues, our lab has recently developed a split, universal
and programmable (SUPRA) CAR system that simultaneously encompasses multiple critical upgrades. These
features can mitigate over-activation, and enhance specificity of the engineered T cells.
As CAR Treg therapies rapidly progress through clinical trials, understanding the mechanism of action of CARs
in Tregs is urgently needed to facilitate CAR Treg therapy advancement. However, our current mechanistic
understanding of how CARs work, especially in Tregs, is limited. Given that protein phosphorylation plays a
critical role in CAR signaling, a global phosphoproteomic analysis on CAR Treg activation will reduce our
knowledge gap by uncovering novel signaling pathways and identifying potential targets for optimization.
In preparation for this proposal, we have demonstrated that our SUPRA CAR system is fully functional in
human primary Tregs. We have also developed a quantitative mass spectrometry workflow to interrogate the
phosphoproteomics of human T cell signaling. We will address our hypothesis that through a better
understanding of CAR signaling and a programmable and inducible CAR system, we can achieve a higher
level of control over Treg immune response, which will ultimately lead to a more effective and safer therapy for
a wide range of autoimmune diseases. We propose to combine synthetic biology and Treg biology to expand
the capability of our SUPRA CAR system in primary Tregs, and subsequently use proteomics to develop a
mechanistic understanding on how the SUPRA CAR system controls Treg signaling. Specifically, we aim to:
Aim 1: Expand the signaling domain repertoire in SUPRA CARs to control Treg responses.
Aim 2: Establish combinatorial AND logic antigen detection in human Tregs.
Aim 3: Define global phosphoproteomics signatures of SUPRA CARs signaling in Tregs.
This work on CAR design could significantly improve the safety and specificity of Treg therapies and
complement existing efforts that emphasize the optimization of Treg activity.
表达肿瘤细胞上靶向抗原的嵌合抗原受体(CAR)的T淋巴细胞
在抗击癌症方面展示了巨大的希望,去年有两种疗法获得了FDA的批准
年。除了免疫激活外,CARS还可以抑制抗原依赖型患者的免疫反应
在调节性T淋巴细胞(Treg)上表达的方式。汽车树在治疗方面显示出了希望
临床前研究中的自身免疫性疾病、移植物对宿主疾病和移植排斥反应
与目前的治疗方法相比,它具有更多的活性和更少的偏离目标的影响。因此,在安全性和特异性方面的进展
CAR Treg疗法可能会对全球数百万患者产生巨大的有益影响。
汽车Treg疗法面临的一个障碍是,目前在诊所发现的汽车设计只能针对
单一抗原具有有限的特异性,这是Treg治疗中的一个主要问题。此外,这些目前的设计是
过于僵化,不利于优化。为了解决这些问题,我们的实验室最近开发了一种分离式、通用型
和可编程(以上)汽车系统,同时包含多个关键升级。这些
这些特性可以缓解过度激活,并增强工程T细胞的特异性。
随着CAR Treg疗法通过临床试验迅速发展,了解CARS的作用机制
在Tregs中迫切需要促进汽车Treg治疗的进展。然而,我们目前的机制
对汽车如何工作的了解有限,特别是在特雷格汽车上。鉴于蛋白质磷酸化起到了
在CAR信号中的关键作用,对CAR Treg激活的全球磷酸蛋白质组分析将减少我们的
通过发现新的信号通路和确定潜在的优化目标来实现知识差距。
在为这项提案做准备时,我们已经展示了我们的SUPRA CAR系统在
人类原始树。我们还开发了一个定量质谱学工作流程来审问
人类T细胞信号的磷酸蛋白质组学。我们将解决我们的假设,通过一个更好的
了解汽车信号和一个可编程和可感应的汽车系统,我们可以实现更高的
对Treg免疫反应的控制水平,这最终将导致更有效和更安全的治疗
范围广泛的自身免疫性疾病。我们建议将合成生物学和Treg生物学相结合,以扩展
我们在初级树上的CAR系统的能力,并随后使用蛋白质组学来开发一种
对车载系统如何控制Treg信号的机械理解。具体来说,我们的目标是:
目标1:扩展上述CARS中的信号结构域,以控制Treg反应。
目的2:建立人树突状细胞的组合和逻辑抗原检测方法。
目的3:定义Tregs中SUPRA CARS信号的全球磷酸蛋白质组学特征。
这项关于汽车设计的工作可以显著提高Treg疗法的安全性和特异性
补充现有的努力,强调优化Treg活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Peter Dooms其他文献
Hans Peter Dooms的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




