SCH: INT: Collaborative Research: Exploiting Voice Assistant Systems for Early Detection of Cognitive Decline
SCH:INT:合作研究:利用语音辅助系统早期检测认知衰退
基本信息
- 批准号:10019452
- 负责人:
- 金额:$ 29.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs disease related dementiaCaregiversCharacteristicsClinicCognitionCognitiveCommunicationComplementConsumptionCustomDataDatabasesDiagnosticEarly DiagnosisElderlyEvaluationHome environmentHumanImpaired cognitionIndividualInterventionKnowledgeLearningLinkMeasuresMethodsModalityModelingNatureNeural Network SimulationOutcomeParticipantPatientsPatternPopulationPsychological TransferQuality of lifeResearchSamplingSeriesSpeechStructureSupport SystemSystemTechniquesTimeVisitVoicebasecognitive testingcostdata miningdata qualityimprovednovelpredictive modelingrecurrent neural networkscreening
项目摘要
Early detection of the cognitive decline involved in Alzheimer's Disease and Related Dementias (ADRD)
in older adults living alone is essential for developing, planning, and initiating interventions and support
systems to improve patients' everyday function and quality of life. Conventional, clinic-based methods for
early diagnosis are expensive, time-consuming, and impractical for large-scale screening. This project
aims to develop a low-cost, passive, and practical home-based assessment method using Voice Assistant
Systems (VAS) for early detection of cognitive decline, including a set of novel data mining techniques for
sparse time-series speech. The project has three specific aims: 1. Using a recurrent neural network
(RNN) and a softmax regression model, we will develop a transfer learning technique to investigate the
link between the speech from in-lab VAS tasks and cognitive decline. The Pitt corpus from the
DementiaBank database will be used to optimize the RNN parameters and thereby overcome the limited
data problem of VAS. The softmax regression model will allow us to align the feature distributions from the
previous speech data and in-lab VAS speech. 2. We will develop a novel "many-to-difference" prediction
model with a symmetric RNN structure to predict the cognitive difference at two ends of a time period from
the sparse time-series data. The proposed model is different from previous ones as the learning focus is
shifted from the short-term pattern differences across users to the pattern difference over time for an
individual user. The proposed model accommodates well for the highly dynamic nature of the inputs and
maximally removes individual characteristics from the prediction result. To analyze the sparse time-series
speech, a new data sampling technique will be used to address the imbalanced data problem, and a data
quality metric will be developed for the proposed model. 3. The team will conduct an 18-month in-lab
evaluation and a 28-month in-home evaluation with a focus on whether the VAS tasks and features from
the in-lab evaluation and the repetition features of the in-home VAS data can measure and predict
cognitive decline in the in-home participants over time. The proposed methods will be integrated into an
interactive system to enable efficient communication on cognitive decline among patients, caregivers, and
clinicians. If successful, the outcomes of this project will provide an opportunity to provide supportive
evidence to clinicians for the early detection of cognitive impairment outside of a clinic-based setting.
早期发现阿尔茨海默病及相关痴呆(ADRD)的认知能力下降
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaohui Liang其他文献
Xiaohui Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaohui Liang', 18)}}的其他基金
SCH: INT: Collaborative Research: Exploiting Voice Assistant Systems for Early Detection of Cognitive Decline
SCH:INT:合作研究:利用语音辅助系统早期检测认知衰退
- 批准号:
10190783 - 财政年份:2019
- 资助金额:
$ 29.61万 - 项目类别:
SCH: INT: Collaborative Research: Exploiting Voice Assistant Systems for Early Detection of Cognitive Decline
SCH:INT:合作研究:利用语音辅助系统早期检测认知衰退
- 批准号:
10404684 - 财政年份:2019
- 资助金额:
$ 29.61万 - 项目类别:














{{item.name}}会员




