Activity Dependent Regulation of Gene Expression in AgRP Neurons is Driven by HFD to Promote DIO
HFD 驱动 AgRP 神经元基因表达的活动依赖性调节以促进 DIO
基本信息
- 批准号:10000135
- 负责人:
- 金额:$ 6.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2022-09-29
- 项目状态:已结题
- 来源:
- 关键词:AcuteAppetitive BehaviorAssesAutomobile DrivingBehaviorBioinformaticsBody WeightBody Weight decreasedBrain regionCaloric RestrictionCandidate Disease GeneChronicConsumptionCouplingDataDevelopmentDiabetes MellitusDietEarly InterventionEatingElectrophysiology (science)Energy IntakeEpidemicFailureFastingFeeding behaviorsFoodFrequenciesFutureGene Expression RegulationGenesGenetic TranscriptionHeart DiseasesHigh Fat DietHomeostasisHormonesHyperphagiaHypertensionHypothalamic structureLaboratoriesLeptinLightMaintenanceMapsMedial Dorsal NucleusMediatingMediator of activation proteinMetabolic stressMetabolismMusNervous System controlNeuraxisNeuronal PlasticityNeuronsObesityOutputPathogenesisPeptidesPhenotypePopulationPreventionPublic HealthRegulationReportingResearchRodentRoleSignal TransductionStructure of nucleus infundibularis hypothalamiSynapsesSynaptic plasticityTimeUnited StatesValidationViralWeightWeight Gaincombatcomorbidityeffective therapyenergy balanceexperimental studyfeedinggene therapyinnovationmRNA sequencingneuromechanismneuronal circuitryneuronal excitabilityneuropeptide Ynew therapeutic targetnovelnovel therapeuticsobesity treatmentobesogenicoptogeneticspostsynapticpresynapticprogramsrelating to nervous systemresponsesaturated fatsugartranscriptome sequencingvalidation studies
项目摘要
PROJECT SUMMARY/ABSTRACT
Obesity and its related comorbidities (diabetes, heart disease, hypertension, etc.) currently afflicts
more than 114 million people in the United States and the absence of effective treatment options is reflected by
the projected rise to nearly 150 million people by 2030. Excess caloric intake is the primary cause of obesity,
however, the neural mechanisms driving superfluous food intake (and likely underlie the pathogenesis of
obesity) remain unidentified. Previous studies in rodents consistently show that diets high in saturated fat and
sugar increase excitability of neuronal circuits responsible for maintaining energy homeostasis. This increased
excitability coincides with increased food intake, body-weight, and leptin insensitivity. However, the time course
for these effects and the importance of underlying synaptic changes are unclear. These changes likely drive
development and maintenance of diet-induced obesity, as well as difficulty losing weight or weight gain after
weight loss.
Agouti-related peptide (AgRP)/ neuropeptide-Y (NPY) neurons in the arcuate nucleus of the
hypothalamus are the primary neuronal population responsible for food intake. AgRP neural activity rapidly and
reliably initiates food seeking behavior, which is typically enhanced by fasting or caloric restriction and
subsides upon initiation of meal consumption. Further, AgRP neuronal activity is consistently elevated following
high fat diet (HFD) feeding. Our preliminary data suggest divergent effects of short- and long-term HFD on
synaptic plasticity and signal integration to AgRP/NPY neurons. Specifically, short-term (2 day) HFD increases
excitatory signaling to AgRP neurons. However, long-term (8 weeks) HFD results in sustained AgRP neural
activity despite increased inhibitory signaling. Since the mechanisms underlying these effects remain poorly
understood, my objective is to utilize previously mapped excitatory and inhibitory inputs to probe HFD-induced
synaptic plasticity and AgRP neuronal activity. I will also use AgRP-specific RNA sequencing to identify
transcriptional changes related to both short- and long-term HFD feeding. By pairing electrophysiology with an
–omics approach, I will identify a priori genes and prioritize novel candidate genes for validation studies in both
short- and long-term HFD fed mice. These will focus on the reported alterations to excitatory or inhibitory inputs
and phenotypic changes in feeding behavior and weight gain.
Diet-induced alterations to neural mechanisms within the AgRP/NPY neuronal population, are crucial
for understanding homeostatic dysregulation. Identification of the underlying mechanisms driving HFD-induced
obesity are critical for future development of novel therapeutic strategies to combat diet-induced obesity.
Overall, this research program proposes experiments that anticipate the discovery of previously undescribed
stimulators of appetitive behavior following acute or chronic consumption of obesogenic diet.
项目总结/摘要
肥胖及其相关合并症(糖尿病、心脏病、高血压等)目前正在折磨
美国有超过1.14亿人,缺乏有效的治疗方案,这反映在
预计到2030年将增加到近1.5亿人。过量的热量摄入是肥胖的主要原因,
然而,驱动过量食物摄入的神经机制(可能是
肥胖症)仍然未被识别。先前对啮齿动物的研究一致表明,高饱和脂肪和
糖增加负责维持能量稳态神经元回路的兴奋性。这种增加的
兴奋性与增加的食物摄入、体重和瘦素不敏感性一致。然而,时间进程
对于这些影响和潜在的突触变化的重要性尚不清楚。这些变化可能会推动
发展和维持饮食引起的肥胖,以及减肥困难或体重增加后,
减肥.
弓状核内的Agouti-related peptide(AgRP)/ neuropeptide-Y(NPY)神经元
下丘脑是负责食物摄取的主要神经元群。AgRP神经活动迅速,
可靠地启动食物寻求行为,这通常通过禁食或热量限制来增强,
开始进食后消退。此外,AgRP神经元活性在以下持续升高:
高脂饮食(HFD)喂养。我们的初步数据表明,短期和长期HFD对
突触可塑性和信号整合到AgRP/NPY神经元。具体而言,短期(2天)HFD增加
AgRP神经元的兴奋性信号传导。然而,长期(8周)HFD导致持续的AgRP神经
活性,尽管抑制性信号传导增加。由于这些影响的机制仍然很差,
理解,我的目标是利用先前映射的兴奋性和抑制性输入来探测HFD诱导的
突触可塑性和AgRP神经元活性。我还将使用AgRP特异性RNA测序来鉴定
与短期和长期HFD喂养相关的转录变化。通过将电生理学与
- 组学方法,我将确定先验基因,并优先考虑新的候选基因进行验证研究,
短期和长期HFD喂养的小鼠。这些将集中在已报道的兴奋性或抑制性输入的改变
以及摄食行为和体重增加的表型变化。
饮食诱导的AgRP/NPY神经元群体内神经机制的改变至关重要
来理解体内平衡失调。确定驱动HFD诱导的
肥胖症是未来开发对抗饮食诱导的肥胖症的新治疗策略的关键。
总的来说,这项研究计划提出的实验,预期发现以前未描述的
急性或慢性消耗致肥胖饮食后的食欲行为刺激剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Austin Korgan其他文献
Austin Korgan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Austin Korgan', 18)}}的其他基金
Activity Dependent Regulation of Gene Expression in AgRP Neurons is Driven by HFD to Promote DIO
HFD 驱动 AgRP 神经元基因表达的活动依赖性调节以促进 DIO
- 批准号:
10439962 - 财政年份:2018
- 资助金额:
$ 6.74万 - 项目类别:
Activity Dependent Regulation of Gene Expression in AgRP Neurons is Driven by HFD to Promote DIO
HFD 驱动 AgRP 神经元基因表达的活动依赖性调节以促进 DIO
- 批准号:
9794001 - 财政年份:2018
- 资助金额:
$ 6.74万 - 项目类别:
相似海外基金
Gut to brain pathways regulating conditioned appetitive behavior
肠道到大脑的通路调节条件性食欲行为
- 批准号:
9763329 - 财政年份:2018
- 资助金额:
$ 6.74万 - 项目类别:
The role of Orexin to appetitive behavior regulated by cerebral cortex.
食欲素对大脑皮层调节的食欲行为的作用。
- 批准号:
26870457 - 财政年份:2014
- 资助金额:
$ 6.74万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Neural Predictors of Self-Regulation Failure and Success for Appetitive Behavior
食欲行为自我调节失败和成功的神经预测因素
- 批准号:
8707012 - 财政年份:2013
- 资助金额:
$ 6.74万 - 项目类别:
Mu-opioid systems in the prefrontal cortex: role in appetitive behavior
前额皮质中的 Mu-阿片系统:在食欲行为中的作用
- 批准号:
8145565 - 财政年份:2010
- 资助金额:
$ 6.74万 - 项目类别:
Mu-opioid systems in the prefrontal cortex: role in appetitive behavior
前额皮质中的 Mu-阿片系统:在食欲行为中的作用
- 批准号:
8008656 - 财政年份:2010
- 资助金额:
$ 6.74万 - 项目类别:
Neural Substrates of Appetitive Behavior in Mood and Motivation
情绪和动机中食欲行为的神经基础
- 批准号:
8061033 - 财政年份:2010
- 资助金额:
$ 6.74万 - 项目类别:
Neural Predictors of Self-Regulation Failure and Success for Appetitive Behavior
食欲行为自我调节失败和成功的神经预测因素
- 批准号:
9042327 - 财政年份:2006
- 资助金额:
$ 6.74万 - 项目类别:
Neural Predictors of Self-Regulation Failure and Success for Appetitive Behavior
食欲行为自我调节失败和成功的神经预测因素
- 批准号:
9249009 - 财政年份:2006
- 资助金额:
$ 6.74万 - 项目类别:
Neural Predictors of Self-Regulation Failure and Success for Appetitive Behavior
食欲行为自我调节失败和成功的神经预测因素
- 批准号:
8577703 - 财政年份:2006
- 资助金额:
$ 6.74万 - 项目类别:
Neural Predictors of Self-Regulation Failure and Success for Appetitive Behavior
食欲行为自我调节失败和成功的神经预测因素
- 批准号:
8687630 - 财政年份:2006
- 资助金额:
$ 6.74万 - 项目类别:














{{item.name}}会员




