Differentiation and Integration of Trisomy 21 iPSCs in an Animal Model

动物模型中 21 三体 iPSC 的分化和整合

基本信息

  • 批准号:
    10000195
  • 负责人:
  • 金额:
    $ 32.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY / ABSTRACT: Differentiation and Integration of Trisomy 21 iPSCs into Cerebral Tissues: Modeling Down Syndrome using Patient-specific iPSC-derived CNS Organoids and Humanized Chimeric Mice. Down syndrome (DS) is caused by trisomy 21, the triplication of human chromosome 21 (HSA21), and is the most common genetic cause of intellectual disability. We have successfully established and characterized multiple lines of iPSCs derived from DS patients. Particularly, we have established more than 50 DS Trisomy 21 iPSC lines, and obtained multiple pairs of corresponding isogenic disomy 21 control lines from these DS iPSCs. In addition, we have implemented CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) technology in making genetic corrections in iPSCs. Modeling of human genetic diseases has previously been largely dependent upon availability of either pathological analysis of postmortem human tissue samples or recapitulation of human disease in transgenic animal models; better research tools for disease modeling are needed. Patient-specific iPSCs are excellent tools and versatile resources for this kind of translational research. As iPSCs are generated on an individual basis, iPSCs may be the optimal cellular material to use for disease modeling, drug discovery, and development of patient-specific therapies. We have already generated a significant amount of preliminary data. We have used a highly efficient CRSPR system to precisely control and normalize genes of interest on HSA21. We have also developed a system of 3- dimentional (3D) CNS organoid (CO) culture from DS iPSCs, which better recapitulates brain development and disease pathogenesis than the conventional 2-dimentional (2D) flat culture, and allows for in-depth characterization by electrophysiological assays. The CNS organoid technology represents an excellent approach for disease modeling; the cerebral organoids generated from patient iPSCs can be used as a model to recapitulate complex neural developmental diseases such as DS. In addition, we have generated a humanized chimeric mouse model, in which DS iPSC derived astrocytes are grafted to the neonatal mouse brains. The detailed genetic etiology for the various symptoms in DS remains elusive. Taking the advantage of these unique tools and resources, we will create novel in vitro and in vivo models of DS with human iPSCs derived from patients to recapitulate the defects in neural differentiation in DS. In support of the feasibility of this proposal, we have obtained the necessary materials and expertise to be used in this study, and have published a rather massive paper on DS iPSCs [Chen C, Jiang P, Xue H, Peterson SE, Tran HT, McCann AE, Parast MM, Li S, Pleasure DE, Laurent LC, Loring JF, Liu Y, Deng W. (2014) Role of astroglia in Down’s syndrome revealed by patient-derived human-induced pluripotent stem cells. Nature Communications. 5:4430 doi: 10.1038/ncomms5430 (2014)]. Our preliminary data show that both trisomy and the isogenic disomy DS astrocytes are able to repopulate the mouse brain, allowing for further interrogation of in vivo behavior of these cells and examination of their effects on neuroinflammation and cognition of the animals. Building upon prior work on multiple genes in pathways of astrocyte-mediated inflammation, we propose to produce both in vitro CNS organoids and in vivo chimeric mouse models to investigate the critical role of these astrocytic inflammatory genes (S100B, IFNAR1, IFNAR2) in development and function of DS patient-derived iPSCs. Taken together, we will use a novel platform of both an in vitro 3D organoid culture system and an in vivo humanized chimeric mouse model using DS patient-derived iPSCs. These models will provide fundamental insights into neural function in the physiological environment of 3D organoids and in early development of human cells in a living animal. The completion of the project will immensely bolster DS pathogenesis studies using patient iPSCs, as well as biochemical and molecular approaches complemented with investigation into neural network functionality. These insights will undoubtedly impact on the treatment of patients with DS.
项目摘要/摘要: 21三体iPSCs向下分化整合到脑组织的研究 使用患者特定的IPSC来源的中枢神经系统有机化合物和人源化嵌合小鼠来诊断综合症。降下来 综合征(DS)是由人类21号染色体的三倍体21三体(HSA21)引起的,是最常见的 智力残疾的常见遗传原因。我们已经成功地建立并表征了多个 DS患者来源的IPSCs系。特别是,我们已经建立了50多个DS三体21 IPSC 并从这些DS ipscs中获得了多对相应的等位基因21控制线。在……里面 此外,我们还实现了CRISPR/CAS9(聚类规则间隔短回文 重复/CRISPR相关)技术在ipscs中进行遗传纠正。人类基因的模型化 以前的疾病在很大程度上依赖于对身体的病理分析 人类组织样本或在转基因动物模型中重现人类疾病;更好的研究工具 对于疾病来说,需要建模。针对患者的IPSCs是实现这一目标的优秀工具和通用资源 一种翻译研究。由于IPSC是以个人为基础生成的,因此IPSC可能是最优的 用于疾病建模、药物发现和开发针对患者的治疗方法的细胞材料。 我们已经生成了大量的初步数据。我们使用了一个高效的CRSPR 系统,以精确控制和标准化HSA21上的目的基因。我们还开发了一个3- DS iPSCs的三维(3D)CNS有机(CO)培养,更好地概括了大脑发育和 疾病的发病机制比传统的二维(2D)平板培养更能深入 通过电生理测试进行表征。CNS有机体技术代表了一种极好的 疾病建模的方法;患者IPSCs产生的脑器官可以作为模型 概述复杂的神经发育疾病,如DS。此外,我们还生成了一个 人源化嵌合小鼠模型,将DS-iPSC来源的星形胶质细胞移植到新生小鼠 大脑。DS中各种症状的详细遗传病因仍不清楚。利用…… 这些独特的工具和资源,我们将创造新的体外和体内DS模型与人的IPSCs 总结DS患者在神经分化方面的缺陷。支持……的可行性 在这项建议中,我们已经获得了用于这项研究的必要材料和专门知识,并已 发表了一篇关于DS iPSCs的相当大量的论文[陈C,姜平,薛H,Peterson SE,Tran HT,McCann AE, 刘勇,刘勇,邓伟(2014)星形胶质细胞在唐氏症中的作用 由患者来源的人类诱导的多能干细胞揭示的综合症。自然通讯。5:4430 DOI:10.1038/nComms5430(2014年)]。我们的初步数据显示,三体和等基因二体DS 星形胶质细胞能够重新填充小鼠的大脑,允许进一步询问这些细胞在体内的行为 细胞及其对动物神经炎症和认知的影响的检测。在以前的基础上构建 研究星形胶质细胞介导的炎症通路中的多个基因,我们建议在体外同时产生这两种基因 中枢神经系统有机化合物和体内嵌合小鼠模型研究这些星形细胞的关键作用 炎性基因(S100B、IFNAR1、IFNAR2)与DS患者IPSCs的发育和功能 综上所述,我们将使用一个新的平台,既有体外3D有机培养系统,也有体内培养系统 使用DS患者来源的IPSCs的人源化嵌合小鼠模型。这些模型将提供基本的 对3D有机化合物生理环境中的神经功能和早期发育的洞察 活体动物体内的人类细胞。该项目的完成将极大地支持DS发病机制的研究 使用患者IPSCs,以及生化和分子方法,并辅之以研究 神经网络功能。这些见解无疑将对DS患者的治疗产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin Tian其他文献

Lin Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin Tian', 18)}}的其他基金

Novel Genetically Encoded Indicators for Interrogating Neuron-Astrocyte Communication Across Timescales
用于询问神经元-星形胶质细胞跨时间尺度通讯的新型基因编码指标
  • 批准号:
    10294806
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Multiplex interrogation of neuromodulatory signaling in behaving animals with enhanced depth and resolution
以增强的深度和分辨率对行为动物的神经调节信号进行多重询问
  • 批准号:
    10400216
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Multiplex interrogation of neuromodulatory signaling in behaving animals with enhanced depth and resolution
以增强的深度和分辨率对行为动物的神经调节信号进行多重询问
  • 批准号:
    10166304
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Novel Genetically Encoded Indicators for Interrogating Neuron-Astrocyte Communication Across Timescales
用于询问神经元-星形胶质细胞跨时间尺度通讯的新型基因编码指标
  • 批准号:
    10693178
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Multiplex interrogation of neuromodulatory signaling in behaving animals with enhanced depth and resolution
以增强的深度和分辨率对行为动物的神经调节信号进行多重询问
  • 批准号:
    10678824
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Novel Genetically Encoded Indicators for Interrogating Neuron-Astrocyte Communication Across Timescales
用于询问神经元-星形胶质细胞跨时间尺度通讯的新型基因编码指标
  • 批准号:
    10461228
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Genetically encoded sensors for the biogenic amines: watching neuromodulation in action
生物胺的基因编码传感器:观察神经调节的作用
  • 批准号:
    8934236
  • 财政年份:
    2014
  • 资助金额:
    $ 32.58万
  • 项目类别:
Genetically encoded sensors for the biogenic amines: watching neuromodulation in action
生物胺的基因编码传感器:观察神经调节的作用
  • 批准号:
    8827206
  • 财政年份:
    2014
  • 资助金额:
    $ 32.58万
  • 项目类别:
Fluorescent biosensors for imaging neurotransmitters: observing synapses in actio
用于神经递质成像的荧光生物传感器:观察活动中的突触
  • 批准号:
    8758411
  • 财政年份:
    2014
  • 资助金额:
    $ 32.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了