RNA sequencing analysis of Cancer
癌症的RNA测序分析
基本信息
- 批准号:10000909
- 负责人:
- 金额:$ 41.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAlternative SplicingAreaAtlasesB-LymphocytesBackBreastCancer CenterCandidate Disease GeneCellsClassificationClinicClinicalClinical TrialsCohort StudiesCommunitiesCompetenceComplexCox Proportional Hazards ModelsDNADNA Sequence AlterationDNA sequencingDataData SetDevelopmentDiagnosisDiseaseEventExonsFibroblastsFormalinFreezingGene ExpressionGene Expression ProfileGene Expression ProfilingGene FusionGenesGenetic MaterialsGenetic TranscriptionGenome Data Analysis CenterGenomicsGenotypeGerm CellsHead and neck structureHistologyHumanImmuneIndividualLeadershipMalignant NeoplasmsManuscriptsMapsMethodsModelingMolecularMutationOutcomePaperPathway interactionsPatient-Focused OutcomesPatientsPatternPharmacotherapyPhaseProtein IsoformsQuality ControlRNARNA SequencesRNA analysisRelapseRoleSamplingSignal PathwaySomatic MutationStructureSupervisionT-Cell ReceptorT-LymphocyteTechnologyTestingThe Cancer Genome AtlasTissuesTumor SubtypeVariantVisualizationWorkbasecancer genomicscancer heterogeneitycancer therapyclinically relevantcohortfeature selectionfollow-upfusion genegenetic signaturegenomic dataimmunological diversityimprovedindividualized medicineinsightmRNA Expressionmalignant breast neoplasmmembernovelnovel markernovel therapeuticsresponsesurvival outcometherapy developmenttooltranscriptometranscriptome sequencingtreatment responsetumorvariant detectionworking group
项目摘要
Abstract
Cancer is a complex disease and represents hundreds of different disease types. It is important to identify
these disease types and their underlying causative alterations to help guide and tailor treatments. Genomic
technologies have been used in projects such as The Cancer Genome Atlas (TCGA) to characterize a large
number of cancers. However, these early genomics projects were mostly on unselected cohorts with limited
follow-up and many clinically relevant datasets were not feasible for analysis due to limitations in technologies
using formalin-fixed and small starting quantities of tissue. New initiatives of the Center for Cancer Genomics
will help us address more clinically-meaningful questions. We propose to use our expertise in gene expression
and RNA-sequencing analysis to further characterize cancer to help identify novel markers for diagnosis, novel
drug therapies and clinical associations. We will approach this in three aims. For Aim 1, we will use RNA
sequence information to identify somatic mutations, improve mapping assembly and quantification of B and T
cells, identify structural variations, and perform high level quality control including genotype checks across
sequence data for the same sample. For Aim 2, we will calculate gene and isoform levels that will be used to
identify tumor subtypes, alternative isoform usage, and application of previously defined gene signatures and
tumor subtypes. For Aim 3, we will use supervised analyses to find genes significantly associated with
molecular features and model gene expression data to look for association with clinical outcome or drug
treatment response. We expect our data, integrated with the data from other Genome Data Analysis Centers,
will uncover novel insights into cancer development, progression and treatment of cancer. We will also
leverage the information we have learned from pan-cancer analyses to identify shared genomic alterations or
pathway activity that may accelerate therapy development.
摘要
癌症是一种复杂的疾病,代表了数百种不同的疾病类型。重要的是要确定
这些疾病类型及其潜在的病因改变,以帮助指导和定制治疗。基因组
技术已被用于项目,如癌症基因组图谱(TCGA),以表征一个大的
癌症的数量然而,这些早期的基因组学项目大多是在有限的
由于技术限制,随访和许多临床相关数据集无法进行分析
使用福尔马林固定和少量的起始组织。癌症基因组学中心的新举措
能帮助我们解决更多临床上有意义的问题我们建议利用我们在基因表达方面的专业知识
和RNA测序分析,以进一步表征癌症,以帮助确定新的诊断标记,新的
药物治疗和临床协会。我们将从三个目标着手。对于目标1,我们将使用RNA
序列信息,以鉴定体细胞突变,改善作图组装和B和T的定量
细胞,识别结构变异,并进行高水平的质量控制,包括基因型检查,
同一样品的序列数据。对于目标2,我们将计算基因和亚型水平,用于
鉴定肿瘤亚型、替代同种型使用和应用先前定义的基因标签,
肿瘤亚型对于目标3,我们将使用监督分析来寻找与以下因素显著相关的基因:
分子特征和模型基因表达数据,以寻找与临床结果或药物
治疗反应。我们希望我们的数据,与其他基因组数据分析中心的数据相结合,
将揭示癌症发展,进展和癌症治疗的新见解。我们还将
利用我们从泛癌症分析中了解到的信息来识别共享的基因组改变,
可能加速治疗发展的途径活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHERINE A. HOADLEY其他文献
KATHERINE A. HOADLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHERINE A. HOADLEY', 18)}}的其他基金
P53, DNA Repair Imbalance, and Immune Response in Breast Cancer Mortality Disparities
P53、DNA 修复失衡和乳腺癌死亡率差异中的免疫反应
- 批准号:
10385785 - 财政年份:2021
- 资助金额:
$ 41.58万 - 项目类别:
Specialized RNA analysis center for integrative genomic analyses
用于综合基因组分析的专业 RNA 分析中心
- 批准号:
10301680 - 财政年份:2021
- 资助金额:
$ 41.58万 - 项目类别:
P53, DNA Repair Imbalance, and Immune Response in Breast Cancer Mortality Disparities
P53、DNA 修复失衡和乳腺癌死亡率差异中的免疫反应
- 批准号:
10594967 - 财政年份:2021
- 资助金额:
$ 41.58万 - 项目类别:
P53, DNA Repair Imbalance, and Immune Response in Breast Cancer Mortality Disparities
P53、DNA 修复失衡和乳腺癌死亡率差异中的免疫反应
- 批准号:
10198123 - 财政年份:2021
- 资助金额:
$ 41.58万 - 项目类别:
Specialized RNA analysis center for integrative genomic analyses
用于综合基因组分析的专业 RNA 分析中心
- 批准号:
10671710 - 财政年份:2021
- 资助金额:
$ 41.58万 - 项目类别:
Specialized RNA analysis center for integrative genomic analyses
用于综合基因组分析的专业 RNA 分析中心
- 批准号:
10458037 - 财政年份:2021
- 资助金额:
$ 41.58万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 41.58万 - 项目类别:
Continuing Grant