Chronic pain conditions and internalizing psychopathology, a genetic epidemiology investigation.

慢性疼痛状况和内化精神病理学,遗传流行病学调查。

基本信息

  • 批准号:
    10008287
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT. Veterans with chronic pain conditions such as migraine headache, fibromyalgia, and irritable bowel syndrome frequently manifest comorbid internalizing psychiatric conditions such as mood and anxiety disorders. The comorbidity between chronic pain conditions and internalizing disorders exacerbates the course of both, contributes to increased opiate use and low quality of life, and leads to worse treatment outcomes. While twin studies have indicated substantial overlap in genetic and environmental influences between individual chronic pain conditions and internalizing disorders, progress in identifying specific genetic variants underlying this relationship has been slow. To date, no studies have evaluated the relationship among chronic pain conditions and internalizing disorders using molecular genetic methodology, those that allow for the identification of specific genes, representing a significant knowledge gap in our understanding of the etiology of these conditions. To address the glaring research gap, the present CDA-2 includes an observational cohort study using data available from the Million Veteran Program (MVP) to examine the relationship between chronic pain conditions and internalizing disorders. The MVP represents a unique and powerful resource for evaluating these relationships through the combination of extensive electronic health record (EHR) and genome-wide genetic data. Using data from this large and representative sample, the specific aims are to: 1) derive chronic pain and internalizing disorder phenotypes from EHR; 2) evaluate the genetic overlap between chronic pain conditions and internalizing disorders using genome-wide association study and linkage disequilibrium (LD)-score regression; and 3) explore the causal relationships among chronic pain, internalizing disorders, and opioid use with Mendelian randomization methods. Strengths of the proposal include the use of large-scale EHR and genetic data to reveal the genetic contributions to the comorbidity among chronic pain conditions and internalizing disorders, and the evaluation of multiple chronic pain conditions and internalizing disorders at once. Understanding the shared genetic etiologies between chronic pain conditions and internalizing disorders as well as potential causal mechanisms will provide targets for advancing therapeutic intervention and facilitate the progression from genetic epidemiology to personalized medicine. The proposed CDA-2 will provide the candidate the training and research opportunities necessary to advance a model of genetic comorbidity among chronic pain conditions and internalizing disorders and support her long-term goal of becoming an independent researcher within the VA with a focus on genetic epidemiology of chronic pain and psychiatric disorders, and the development of precision medicine approaches to the treatment of Veterans with these conditions. Specific training goals include 1) gaining proficiency in the use of EHR data for clinical and translational research; 2) formal training in molecular genetics; 3) expanding knowledge of substantive issues underlying pain mechanisms and opioid medication use; and 4) research ethics, grant writing, and professional development. The training plan consists of an interlocking program of coursework, intensive mentoring, reading groups, seminar series, and conferences, with special attention to training in research ethics. Direct mentoring from leading experts in each of the proposed training domains is a fundamental feature of this proposal: primary mentor, Dr. Niloofar Afari (pain phenotyping), co-mentors Drs. Richard Hauger (MVP expertise), Murray Stein (EHR data and psychiatric phenotyping), and Caroline Nievergelt (statistical genetics), and consultants Drs. Matthew Panizzon (quantitative genetics), James Murphy (EHR), Mark Wallace (pain and opioid use), and Wesley Thompson (biostatistics). The candidate will use these skills and resources to accomplish the specific research aims of the study. Findings from this CDA-2 have the potential to substantially increase understanding of the mechanisms that link chronic pain and internalizing disorders and lead to targeted precision medicine interventions of these debilitating conditions in Veterans.
摘要。患有慢性疼痛的退伍军人,如偏头痛、纤维肌痛和易怒

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marianna Gasperi其他文献

Marianna Gasperi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marianna Gasperi', 18)}}的其他基金

Chronic pain conditions and internalizing psychopathology, a genetic epidemiology investigation.
慢性疼痛状况和内化精神病理学,遗传流行病学调查。
  • 批准号:
    10316156
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Chronic pain conditions and internalizing psychopathology, a genetic epidemiology investigation.
慢性疼痛状况和内化精神病理学,遗传流行病学调查。
  • 批准号:
    10595497
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Chronic pain conditions and internalizing psychopathology, a genetic epidemiology investigation.
慢性疼痛状况和内化精神病理学,遗传流行病学调查。
  • 批准号:
    10755801
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了