Hybridized structure- and ligand- based drug discovery approaches targeting ASCT2, an amino acid transporter critical for upregulated cell proliferation in numerous cancer types

针对 ASCT2 的基于杂交结构和配体的药物发现方法,ASCT2 是一种氨基酸转运蛋白,对于多种癌症类型的细胞增殖上调至关重要

基本信息

  • 批准号:
    10003012
  • 负责人:
  • 金额:
    $ 3.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Hybridized structure- and ligand- based drug discovery approaches targeting ASCT2, an amino acid transporter critical for upregulated cell proliferation in numerous cancer types This proposal outlines the protocols and techniques I will be using to optimize drug discovery of ASCT2, a promising target for anti-cancer therapeutics. ASCT2 plays a key role in increasing the glutamine influx for tumor cells to maintain such high metabolic rates required for rapid proliferation. The first structures of ASCT2 were recently determined experimentally, making this a newly viable target for structure-based studies ASCT2 was only recently discovered to play a critical role in cancer cell metabolism and little medicinal chemistry efforts have been focused on ASCT2 antagonist development allowing immense potential for breaking into new compound scaffolds for further testing. Currently, there have not been any ASCT2 drug campaigns that incorporate computational drug discovery methods and this proposal outlines the first studies dedicated to this. Many institutions and pharmaceutical companies have implemented computational strategies into drug discovery pipelines as a means to produce viable drug candidates in a more cost-efficient and timely manner. Depending on the target of interest, researchers focus more intently on either ligand-based (LB) or structure-based (SB) methods, but rarely are these two methods hybridized in a sophisticated fashion. By utilizing strategies of both LB- and SB- computational drug discovery, I intend to merge the advantages of both methodologies as a means to sample and filter large chemical space more efficiently. Our lab has active development in two computational chemistry software suites: Rosetta primarily focuses on SB methods whereas the Biology and Chemistry Library (BCL) contains advanced cheminformatics toolsets for LB methods. The focus of my project will be to integrate the RosettaDrugDesign code to allow a more extensive, yet efficient sampling of chemical space using ligand-based techniques. We intend to incorporate these more advanced LB techniques available in the BCL, including multi-tasking artificial neural networks for Quantitative Structure- Activity Relationship predictions, to filter compounds during docking simulations within the RosettaDrugDesign. By bringing together the structure prediction abilities of Rosetta and small- molecule tools of BCL, we anticipate exceptional advances in our abilities to efficiently design drugs for ASCT2.
基于杂化结构和配体的药物发现方法靶向ASCT2,一种氨基酸

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shannon Talli Smith其他文献

Shannon Talli Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shannon Talli Smith', 18)}}的其他基金

Hybridized structure- and ligand- based drug discovery approaches targeting ASCT2, an amino acid transporter critical for upregulated cell proliferation in numerous cancer types
针对 ASCT2 的基于杂交结构和配体的药物发现方法,ASCT2 是一种氨基酸转运蛋白,对于多种癌症类型的细胞增殖上调至关重要
  • 批准号:
    10333203
  • 财政年份:
    2020
  • 资助金额:
    $ 3.82万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了