ARGUS-MDS: automated, quantitative and scalable system for social processes in behavioral health

ARGUS-MDS:行为健康社会过程的自动化、定量和可扩展系统

基本信息

  • 批准号:
    10019734
  • 负责人:
  • 金额:
    $ 48.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-06 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Argus Cognitive STTR Grant Application Abstract Standardized behavioral observation methods are integral to developmental, educational, and behavioral science research. However, existing observational strategies are too laborious to use in large-scale, intervention and dissemination trials needed in autism spectrum disorder (ASD). In addition, current observational strategies do not yield sufficiently quantitative, comparable and granular assessment that could drive the comparison of therapies in clinical trials or the optimization and personalization of intervention. We are developing a minimally intrusive medical device technology (“ARGUS-MDS”) to simultaneously monitor multiple key social and problem behaviors in individuals with ASD and related neurodevelopmental disorders (NDDs). Our team represents an essential collaboration between computer and clinical scientists with expertise in artificial intelligence (AI), NDDs, diagnostics, multi-modal interventions, and psychometrics. We seek support in the form of a Fast Track STTR grant to validate the psychometric properties of ARGUS-MDS and its ability to provide data on change in target behaviors in early childhood and school-aged children. This would then support the development of a scalable, digital treatment progress indicator for behaviors reflecting social, repetitive behavior, and associated symptom profiles in ASD. In Phase I, video and audio data will be collected during gold-standard diagnostic evaluations individuals with ASD (n=15). Aim 1.1 will establish quality and clinical validity of ARGUS-MDS algorithms for key social communication behaviors, while Aim 1.2 will evaluate test-retest reliability of biometric output. Phase I will show that ARGUS-MDS meets quality metrics for biometric output, validates the clinician- technician feedback system, and establishes intraclass correlation coefficients for automated social communication (AutoSC) output. In Phase II our focus shifts to establishing psychometric properties of derived scores for AutoSC analysis, evaluating convergence with established clinical and functional measures, and preparing for regulatory filing in Phase III. Aim 2.1. will develop scores from biometric data through exploratory and confirmatory factor analyses of social communication behaviors. Aim 2.2 evaluates correspondence of AutoSC scores to scores on standardized clinical assessments. Aim 2.3 develops a comprehensive Validation Strategy and executes Analytical Validation, per medical device design control regulation and FDA guidance. Phase II will develop scores from AutoSC output, evaluate measurement characteristics of AutoSC scores, reliability & validity of Autos SC scores, and executes all Analytical Validations per the strategy document and FDA guidance. Phase I and II milestones will set us up for commercialization in Phase III, including filing for regulatory approval and product launch. Successful completion of this project will provide a novel, scalable medical device technology to support objective, automated clinical evaluations of social impairments in ASD and other NDDs.
阿格斯认知str基金申请

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Attila Meretei其他文献

Attila Meretei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Attila Meretei', 18)}}的其他基金

ARGUS-MDS: automated, quantitative and scalable system for social processes in behavioral health
ARGUS-MDS:行为健康社会过程的自动化、定量和可扩展系统
  • 批准号:
    9906771
  • 财政年份:
    2019
  • 资助金额:
    $ 48.51万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.51万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了