Humanized Mouse Avatars for T1D
T1D 人性化鼠标头像
基本信息
- 批准号:10020970
- 负责人:
- 金额:$ 101.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-25 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAntigensAreaAutoantibodiesAutoimmune ProcessAutologousBeta CellBiological AssayBiological ModelsCadaverCell Differentiation processCell LineCell TransplantationCellsClinical TrialsClone CellsCloningConsentDevelopmentDiabetes MellitusDiseaseDisease ProgressionEngraftmentEnsureEtiologyGenotypeGlucoseGoalsGrantHematopoietic stem cellsHumanImmuneImmune systemImmunodeficient MouseImmunotherapyIn VitroIndividualInsulinInsulin-Dependent Diabetes MellitusIslets of LangerhansLaboratoriesMHC Class I GenesMediatingMethodsModelingMonitorMusNatural HistoryPathologyPatientsPhasePlant RootsProtocols documentationReagentReproducibilityResearch PersonnelResource DevelopmentRodent ModelScientistSourceStandardizationStimulusSystemT-LymphocyteTherapeuticTherapeutic InterventionThymic epithelial cellTissuesTransplantationautoreactive T cellautoreactivitycell typedesigndiabetichuman embryonic stem cellhuman modelhumanized mousein vivoindividual patientinduced pluripotent stem cellinterestisletmeetingsmultidisciplinarynovelnovel therapeutic interventionnovel therapeuticspatient subsetspreventreconstitutionrecruitrisk variantstem
项目摘要
PROJECT SUMMARY / ABSTRACT
To date, studies of human type 1 diabetes (T1D) have failed to provide a mechanistic understanding of the
underlying causes of the disease, largely because patients must be analyzed long after initiation of the
autoimmune attack. Our ignorance of the key molecules and cells mediating the initiation and progression of
human T1D may well underlie the paucity of significant new therapeutic interventions. This renewal proposal
addresses the stated goal of RFA-DK-18-013 that “CMAI supports resource development projects that are
primarily focused on the reagents and model systems needed for mechanistic study of human T1D.” Our
Scientific Premise is that human T1D beta cells and immune cells transplanted into optimized
immunodeficient mice (OPTI-MICE) will provide tractable model systems to study human T1D. We
propose short term (Aim 1) and long term (Aim 2) goals. Aim 1 will develop an effector phase model of
T1D in OPTI-MICE. Our team has already assembled the 3 key components that are required to develop an
effector model of T1D: 1) Appropriate OPTI-MICE as recipients; 2) autoreactive T cells, lines, clones and iPS-
derived T cells from T1D donors; 3) autologous human iPS cell-derived (SC)- cells. We have developed NSG
mice deficient in MHC class I and II that do not develop GVHD when engrafted with functional human T cells
for this aim. We have also recruited Dr. Sally Kent, an expert in islet autoreactive T cell cloning, to provide
T1D autoreactive T cell lines and clones from consented T1D patients. Aim 2 will reconstruct human T1D in
OPTI-MICE using cells derived from T1D iPS cells. These iPS cells will be used to produce the three key
cell types: hematopoietic stem cells (HSC) that will generate immune systems, thymic epithelial cells (TEC),
and β-cells, all integral to the pathology of T1D. These cells will be derived through the use of directed
differentiation and reprogramming strategies. We have been successful in generating functional human β cells
from human control and T1D patient iPS cells, providing a standardized and reproducible source of β cells for
our studies. We have successfully performed directed differentiation of human ES cells to generate HSCs, and
will use similar approachs for directed differentiation of iPS cells into HSCs. Functional human TEC will also be
generated using directed differentiation protocols similar to those used to achieve fully differentiated human β
cells. Each cell type will be subjected to rigorous analysis in vitro and in vivo to ensure full functionality.
Differentiated β-cells, TECs, and immune cells derived from T1D donors will be co-transplanted into OPTI-
MICE specifically optimized to enhance T cell, SC-β cell, SC-HSC, and SC-TEC cell engraftment and function
allowing reconstitution of an individual patient's disease in an animal model. These new models of human
diabetes will permit detailed observation, manipulation, and analysis of T1D, enabling us to determine the cells
and antigens that initiate T1D, drive disease progression and mediate beta cell destruction. We have
assembled an collaborative team of scientists that have the expertise required to accomplish this project.
项目总结/摘要
迄今为止,人类1型糖尿病(T1 D)的研究未能提供对糖尿病的机制性理解。
疾病的根本原因,很大程度上是因为患者必须在开始治疗后很长时间内进行分析。
自身免疫攻击我们对介导肿瘤发生和发展的关键分子和细胞的无知,
人类T1 D可能是缺乏重要的新治疗干预的原因。这一更新提案
解决了RFA-DK-18-013的既定目标,即“CMAI支持资源开发项目,
主要专注于人类T1 D机制研究所需的试剂和模型系统。我们
科学预测是,人类T1 D β细胞和免疫细胞移植到优化的
免疫缺陷小鼠(OPTI-MICE)将提供易于处理的模型系统以研究人T1 D。我们
提出短期(目标1)和长期(目标2)目标。目标1将开发一个效应阶段模型,
OPTI-MICE中的T1 D。我们的团队已经组装了开发一个
T1 D的效应模型:1)适当的OPTI-MICE作为受体; 2)自身反应性T细胞、系、克隆和iPS-
来源于T1 D供体的T细胞; 3)自体人iPS细胞来源的(SC)-CD 4细胞。我们开发了NSG
当植入功能性人T细胞时,MHC I类和II类缺陷小鼠不发生GVHD
为了这个目的。我们还聘请了胰岛自身反应T细胞克隆专家Sally肯特博士来提供
来自同意的T1 D患者的T1 D自身反应性T细胞系和克隆。Aim 2将重建人类T1 D,
使用源自T1 D iPS细胞的细胞的OPTI-MICE。这些iPS细胞将用于生产三种关键的
细胞类型:造血干细胞(HSC),将产生免疫系统,胸腺上皮细胞(TEC),
和β细胞,所有这些都是T1 D病理学的组成部分。这些细胞将通过使用定向
分化和重编程策略。我们已经成功地产生了功能性人类β细胞
从人对照和T1 D患者iPS细胞,提供了标准化和可重复的β细胞来源,用于
我们的研究我们已经成功地进行了人ES细胞的定向分化以产生HSC,
将使用类似的方法将iPS细胞定向分化为HSC。功能性人类TEC也将被
使用类似于用于获得完全分化的人β细胞的那些定向分化方案产生。
细胞每种细胞类型都将在体外和体内进行严格的分析,以确保其功能完整。
来自T1 D供体的分化的β细胞、TEC和免疫细胞将被共移植到OPTI-100中。
针对增强T细胞、SC-β细胞、SC-HSC和SC-TEC细胞植入和功能进行了专门优化的MICE
允许在动物模型中重建个体患者的疾病。这些新的人类模型
糖尿病将允许详细观察,操作和分析T1 D,使我们能够确定细胞
以及引发T1 D、驱动疾病进展和介导β细胞破坏的抗原。我们有
组建了一个科学家合作团队,他们拥有完成这个项目所需的专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Allen Brehm其他文献
Michael Allen Brehm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Allen Brehm', 18)}}的其他基金
Immunogenicity of Human Stem Cell-Derived Beta Cells and Muscle Cells in Humanized Mice
人类干细胞衍生的β细胞和肌肉细胞在人源化小鼠中的免疫原性
- 批准号:
10218287 - 财政年份:2019
- 资助金额:
$ 101.15万 - 项目类别:
Immunogenicity of Human Stem Cell-Derived Beta Cells and Muscle Cells in Humanized Mice
人类干细胞衍生的β细胞和肌肉细胞在人源化小鼠中的免疫原性
- 批准号:
10449121 - 财政年份:2019
- 资助金额:
$ 101.15万 - 项目类别:
Humanized mice for investigating human stem cell-derived microglia in Alzheimers Disease
用于研究阿尔茨海默病中人类干细胞衍生的小胶质细胞的人源化小鼠
- 批准号:
10120199 - 财政年份:2019
- 资助金额:
$ 101.15万 - 项目类别:
Live imaging of SARS-CoV-2 infection in novel humanized mice
新型人源化小鼠中 SARS-CoV-2 感染的实时成像
- 批准号:
10400392 - 财政年份:2019
- 资助金额:
$ 101.15万 - 项目类别:
Novel humanized mouse model developed from cord blood CD34 positive HSC and autologous iPS cell derived thymus
由脐带血CD34阳性HSC和自体iPS细胞衍生胸腺开发的新型人源化小鼠模型
- 批准号:
9915858 - 财政年份:2017
- 资助金额:
$ 101.15万 - 项目类别:
Novel humanized mouse model developed from cord blood CD34 positive HSC and autologous iPS cell derived thymus
由脐带血CD34阳性HSC和自体iPS细胞衍生胸腺开发的新型人源化小鼠模型
- 批准号:
9368151 - 财政年份:2017
- 资助金额:
$ 101.15万 - 项目类别:
Novel humanized mouse model developed from cord blood CD34 positive HSC and autologous iPS cell derived thymus
由脐带血CD34阳性HSC和自体iPS细胞衍生胸腺开发的新型人源化小鼠模型
- 批准号:
10153677 - 财政年份:2017
- 资助金额:
$ 101.15万 - 项目类别:
Development and Validation of Novel NSG Mouse Models for Human Stem Cell Therapy
用于人类干细胞治疗的新型 NSG 小鼠模型的开发和验证
- 批准号:
8666892 - 财政年份:2014
- 资助金额:
$ 101.15万 - 项目类别:
Retrogenic humanized mice for the study of T1D
用于 T1D 研究的逆基因人源化小鼠
- 批准号:
8728475 - 财政年份:2014
- 资助金额:
$ 101.15万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




