Molecular mechanisms supporting bacterial survival within immune cells
支持免疫细胞内细菌存活的分子机制
基本信息
- 批准号:10026273
- 负责人:
- 金额:$ 23.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAmino AcidsAntibioticsBacteriaBacterial ProteinsBindingBinding ProteinsBiologyCell membraneCellsChemicalsCollaborationsComplexConfocal MicroscopyCopperCritical PathwaysCrystallizationCyclooctenesCytosolDiseaseEndoplasmic ReticulumEnsureFaceFoundationsGenetic DiseasesGoalsGolgi ApparatusGram-Negative BacteriaHeadHumanImmuneImmunityIndividualInfectionInositolInterventionKnowledgeLabelLegionellaLegionella pneumophilaLegionnaires&apos DiseaseLigandsLipid BindingLipidsLungLysosomesMapsMediatingMembraneMembrane Protein TrafficModelingMolecularMolecular TargetMutation AnalysisOrganellesOutcomePathway interactionsPhasePhosphatidylinositolsPlasma CellsPneumoniaPositioning AttributeProteinsPublic HealthReactionResearchSiteSpecificitySurface Plasmon ResonanceSystemTestingTherapeuticTimeTransmembrane TransportTransport ProcessTravelVacuoleVesicleVirulenceWorkX-Ray Crystallographybasecombatdrinking waterefflux pumpfluorophoreimprovedinsightmacrophagenovelpathogenpathogenic bacteriapreventpublic drinkingrecruitspatiotemporaltrafficking
项目摘要
PROJECT SUMMARY
Gram-negative bacteria are increasingly challenging to combat because existing antibiotics struggle to reach
their intracellular targets and face elimination by efflux pumps. This issue is particularly pressing for bacteria
that establish a replication-permissive vacuole derived from the host's plasma membrane. Shielded by multiple
layers of membranes, intracellular pathogens become inaccessible to traditional antibiotics. A fundamental gap
persists in the current understanding of how bacterial pathogens subvert host membrane transport processes
and continued existence of this gap impedes our understanding of mechanisms that bacterial pathogens use to
coordinate virulence strategies. Our long-term goal is to address this gap by systematically unveiling the host
pathways critical for infection of human lung macrophages by the bacterial pathogen Legionella pneumophila,
the causative agent of a severe pneumonia known as Legionnaires' disease. Legionella infects lung
macrophages and resists degradation by establishing and residing within a membrane-bound compartment
known as the Legionella-containing vacuole. Initially derived from the host cell's plasma membrane, this
vacuolar membrane is dramatically remodeled during infection. To do so, the bacterium immediately begins
translocating a large number of (effector) proteins directly into the host cytosol. The host membrane trafficking
network is a major target of L. pneumophila effector proteins. In particular, vesicles traveling between the
endoplasmic reticulum and the Golgi are sequestered by the Legionella-containing vacuole early during
infection, whereas fusion with degradative lysosomes is prevented. These observations support the working
model that the pathogen orchestrates its molecular interactions with the host to stimulate or inhibit fusion of
host vesicles with its vacuole. Delineating the spatiotemporal distribution of secreted effectors is a critical step
to understanding how L. pneumophila interacts with the host cell to ensure its own survival. The overall
objective is to examine the spatiotemporal localization of L. pneumophila effector proteins in the context of
human macrophage infection and to determine how L. pneumophila effectors interact with host
phosphoinositide lipids to target membrane compartments. We propose: (1) to use a dual pronged approach
based on chemical biology to directly track localization of L. pneumophila effectors in infected human
macrophages, and (2) to characterize the protein-lipid interface between L. pneumophila effectors identified in
our preliminary screen using X-ray crystallography. The proposed research is significant because it is
positioned to advance our understanding of how bacterial pathogens manipulate host membrane transport
pathways to promote intracellular survival of bacteria. A significant collateral outcome is that these studies
could suggest new molecular targets for intervention in L. pneumophila infections and related conditions.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Ramona Neunuebel其他文献
Maria Ramona Neunuebel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Ramona Neunuebel', 18)}}的其他基金
Molecular mechanisms supporting bacterial survival within immune cells
支持免疫细胞内细菌存活的分子机制
- 批准号:
10872599 - 财政年份:2014
- 资助金额:
$ 23.66万 - 项目类别:
Molecular mechanisms supporting bacterial survival within immune cells
支持免疫细胞内细菌存活的分子机制
- 批准号:
10468706 - 财政年份:2014
- 资助金额:
$ 23.66万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Continuing Grant