Discovering dynamic computations from large-scale neural activity recordings

从大规模神经活动记录中发现动态计算

基本信息

  • 批准号:
    10002240
  • 负责人:
  • 金额:
    $ 44.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-20 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract How neural activity is coordinated within local microcircuits and across brain regions to drive behavior is a central open question in neuroscience. Recent advances in massively-parallel neural recording tech- nologies are producing dynamic activity maps during complex behaviors, with single-neuron granularity and single-spike resolution. To reveal fundamental dynamic features in these large-scale datasets, new principled and scalable computational methods are urgently needed. To address this need, we will de- velop a broadly applicable, non-parametric inference framework for discovering dynamic computations from large-scale neural activity recordings. Our framework seeks a dynamical model of the data, but unlike existing techniques, does not require a priori model assumptions. Existing techniques commonly fit data with simple ad hoc models, which often miss or distort defining dynamic features. Instead, our non-parametric approach explores the entire space of all possible dynamics in search for the model consistent with the data, and thereby eliminates a priori guess work, ambiguous model comparisons and model-induced biases. We aim to develop optimization algorithms to effectively search through the space of all dynamical models, implement these algorithms on GPUs to achieve maximal computational speed, and derive information-theoretic bounds to quantify reliability of our computational methods. To demonstrate how our novel methods aid scientific discovery, we will employ them to examine decision- related activity in parietal and premotor cortices. While different theoretical models of decision-making have been proposed, it still remains unknown how decision computations are implemented on the level of individual neurons and neural populations. Our analyses will offer the first computational models of decision-making rooted directly in neural data, reconcile stability of population dynamics with hetero- geneity of single-neuron responses, reveal differences in decision-computations across cortical layers, and identify differences in decision-related dynamics of excitatory vs. inhibitory neurons.
项目概要/摘要 神经活动如何在局部微电路内和跨大脑区域协调以驱动行为 神经科学中的一个核心开放问题。大规模并行神经记录技术的最新进展 nologies 在复杂行为期间生成具有单神经元粒度的动态活动图 和单尖峰分辨率。为了揭示这些大规模数据集中的基本动态特征,新的 迫切需要有原则且可扩展的计算方法。为了满足这一需求,我们将 开发一个广泛适用的非参数推理框架来发现动态计算 来自大规模神经活动记录。我们的框架寻求数据的动态模型,但是 与现有技术不同,不需要先验模型假设。现有技术普遍 使用简单的临时模型来拟合数据,这通常会错过或扭曲定义的动态特征。相反,我们的 非参数方法探索所有可能动态的整个空间来寻找模型 与数据一致,从而消除先验猜测工作、模糊的模型比较 和模型引起的偏差。我们的目标是开发优化算法来有效地搜索 所有动态模型的空间,在 GPU 上实现这些算法以实现最大计算量 速度,并得出信息论界限来量化我们计算方法的可靠性。到 展示我们的新方法如何帮助科学发现,我们将用它们来检查决策 顶叶和前运动皮质的相关活动。虽然不同的决策理论模型 已经被提出,但仍然未知如何在该级别上实现决策计算 单个神经元和神经群体。我们的分析将提供第一个计算模型 决策直接植根于神经数据,协调种群动态的稳定性与异质性 单神经元反应的遗传性,揭示皮层各层决策计算的差异, 并确定兴奋性神经元与抑制性神经元的决策相关动态的差异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tatiana Engel其他文献

Tatiana Engel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tatiana Engel', 18)}}的其他基金

Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
  • 批准号:
    10840682
  • 财政年份:
    2023
  • 资助金额:
    $ 44.16万
  • 项目类别:
Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
  • 批准号:
    10263628
  • 财政年份:
    2021
  • 资助金额:
    $ 44.16万
  • 项目类别:
Discovering dynamic computations from large-scale neural activity recordings
从大规模神经活动记录中发现动态计算
  • 批准号:
    9789277
  • 财政年份:
    2018
  • 资助金额:
    $ 44.16万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.16万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了