Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
基本信息
- 批准号:10001503
- 负责人:
- 金额:$ 36.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal BehaviorAnimal ExperimentsAnimalsAnteriorAreaBayesian learningBehaviorBehavioralBeliefBig DataBrainCalciumClinicalClinical ResearchClosure by clampCognitionComplexComputer AssistedCuesDataData AnalysesData CollectionData SetDevelopmentDevicesDiagnosisDimensionsDiseaseElectrophysiology (science)EngineeringEpilepsyEvolutionExperimental DesignsFeedbackFreedomGoalsHandImageIntelligenceInterventionInvestigationLateralLawsLearningLearning DisordersMeasurableMeasuresMethodsModelingModernizationMonitorMotor CortexNeuronsNeurosciencesNeurosciences ResearchObsessive-Compulsive DisorderOperating SystemParkinson DiseasePerceptionPerformancePopulationPopulation ControlPopulation DynamicsProcessProtocols documentationRattusRewardsRodentRodent ModelSchemeStatistical AlgorithmStatistical ModelsStimulusStructureSystemTechnologyTestingTimeTrainingVisualizationautism spectrum disorderbasedesigndynamic systemexperimental studyflexibilityhigh dimensionalityinsightmultidimensional dataneglectneurotransmissionnext generationnoveloptogeneticsrelating to nervous systemsignal processingtheoriestool
项目摘要
Project Summary / Abstract
High-throughput experimental neuroscience has made it possible to observe behavior of many
animals, as well as a large groups of neurons simultaneously, providing an exciting opportunity for
figuring out how the neural system performs computations that underlie perception, cognition, and
behavior. However, there is a major bottleneck in the scientific cycle of data analysis and data
collection due to the complexity and scale of noisy, high-dimensional data. The primary objective of
this project is to develop tools for tracking the internal state of the brain that are not directly
measurable from both the behavior and neural signals, and to generate optimal stimulus
corresponding to the current brain state. These external stimuli can be used to perturb the animal’s
belief or strategy about the world such that the animal would behave differently.
Aim 1: Our team will develop a neural state tracking system that will parse out and display complex
neural signals recorded from the animal brain in real-time. The neural state tracking algorithm will
also extract the law that the neural system operates under, allowing neuroscientist to generate a new
class of hypotheses about the population level implementation underlying intelligent behavior.
Aim 2: To causally test hypothesis on how population of neurons compute and produce meaningful
behavior, it is necessary to be able to perturb the internal computation process. We will develop a
feedback control system to perturb the neural dynamics at a short time scale with a novel control
scheme for neural computation that respects the brain’s own degrees of freedom.
Aim 3: By understanding and tracking the time evolution of internal strategy throughout learning, we
can learn how to optimize the training of animal behavior. In this aim, we will develop statistical
models of learning and a computational system to generate the best stimuli based on the past
performance of the animal.
The statistical tools developed in this project will likely accelerate fundamental discoveries in
neuroscience. Clinically, this research can extend to monitoring, diagnosing, and building next-
generation real-time feedback stimulation devices for disorders with a neurodynamic or behavioral
component such as Parkinson’s disease, autism, learning disorders, obsessive compulsive disorder,
and epilepsy.
项目总结/摘要
高通量的实验神经科学使观察许多人的行为成为可能。
动物,以及一大群神经元同时,提供了一个令人兴奋的机会,
弄清楚神经系统是如何执行感知、认知和
行为然而,在数据分析和数据的科学周期中存在重大瓶颈
由于噪声、高维数据的复杂性和规模,的主要目的
这个项目是开发工具来跟踪大脑的内部状态,
可以从行为和神经信号中测量,并产生最佳刺激
对应于当前的大脑状态。这些外部刺激可以用来扰乱动物的
关于世界的信念或策略,这样动物就会有不同的行为。
目标1:我们的团队将开发一个神经状态跟踪系统,该系统将解析并显示复杂的
从动物大脑中实时记录的神经信号。神经状态跟踪算法将
还提取了神经系统运作的规律,使神经科学家能够产生一个新的
关于智能行为背后的群体水平实现的一类假设。
目的2:因果检验关于神经元群体如何计算和产生有意义的
行为,有必要能够扰乱内部计算过程。我们将开发一个
反馈控制系统,以扰动神经动力学在短的时间尺度与一种新的控制
一种尊重大脑自身自由度的神经计算方案。
目标3:通过理解和跟踪学习过程中内部策略的时间演变,
可以学习如何优化动物行为的训练。为此,我们将制定统计
学习模型和一个计算系统,以根据过去产生最佳刺激,
动物的表现。
在这个项目中开发的统计工具可能会加速基础发现,
神经科学在临床上,这项研究可以扩展到监测,诊断和建立下一个-
用于神经动力学或行为障碍的实时反馈刺激装置
帕金森病、自闭症、学习障碍、强迫症、
和癫痫。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Il Memming Park其他文献
Edinburgh Research Explorer Strictly positive-definite spike train kernels for point-process divergences
爱丁堡研究探索者用于点过程分歧的严格正定尖峰训练内核
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Il Memming Park;Sohan Seth;Murali Rao;Jos´e C. Pr´ıncipe - 通讯作者:
Jos´e C. Pr´ıncipe
Canonical correlations reveal co-variability between spike trains and local field potentials in area MT)
典型相关性揭示了尖峰序列与区域 MT 中局部场电位之间的协变性)
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:2.4
- 作者:
Jacob L. Yates;Evan Archer;A. Huk;Il Memming Park - 通讯作者:
Il Memming Park
Variational Joint Filtering
变分联合过滤
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yuan Zhao;Il Memming Park - 通讯作者:
Il Memming Park
Spectral learning of Bernoulli linear dynamical systems models for decision-making
用于决策的伯努利线性动力系统模型的谱学习
- DOI:
10.48550/arxiv.2303.02060 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Iris R. Stone;Yotam Sagiv;Il Memming Park;Jonathan W. Pillow - 通讯作者:
Jonathan W. Pillow
Optimization in Reproducing kernel Hilbert Spaces of Spike Trains
尖峰列车核希尔伯特空间再现的优化
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
A. Paiva;Il Memming Park;J. Príncipe - 通讯作者:
J. Príncipe
Il Memming Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Il Memming Park', 18)}}的其他基金
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
9789318 - 财政年份:2018
- 资助金额:
$ 36.25万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 36.25万 - 项目类别:
Continuing Grant