Software for Cox Regression Analysis of Interval-Censored Data

用于区间删失数据 Cox 回归分析的软件

基本信息

  • 批准号:
    10002444
  • 负责人:
  • 金额:
    $ 48.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary Interval-censored data arise frequently in clinical and epidemiological studies, because the time to the devel- opment of an asymptomatic disease (e.g., tumor occurrence, HIV infection, onset of diabetes or hypertension) cannot be observed exactly but rather is known to lie in a time interval between two consecutive clinical exam- inations. Recent theoretical and computational advances in nonparametric maximum likelihood estimation of semiparametric regression models with interval-censored data promise far more efficient and reliable analysis than what is currently possible. The broad, long-term objective of this SBIR proposal is to create a suite of commands, along with a companion text, in the widely used commercial software package Stata for performing cutting-edge nonparametric maximum likelihood estimation of the familiar Cox proportional hazards model with time-dependent covariates for interval-censored event times and for extending this methodology to multivariate interval-censored event times, which arise when several asymptomatic diseases or recurrences of a particu- lar disease are of interest or when study subjects are sampled in clusters (e.g., families, litters). The recently completed Phase I of this project has successfully established the scientific merit and technical feasibility of the proposed research and development effort by producing a prototype command for nonparametric maximum like- lihood estimation of the Cox proportional hazards model with potentially time-dependent covariates for univariate interval-censored data (i.e., a single event time for unrelated subjects) and by certifying the correctness of the estimation results from the new command against results from published papers and research code. The Phase II project will build on the success of the Phase I effort to develop a suite of reliable, robust, user-friendly, speed- and memory- efficient commands for semiparametric regression analysis of interval-censored data. Specifically, the Phase I code will be expanded substantially to incorporate stratification factors and likelihood ratio statistics (as an alternative to the Wald statistics implemented in Phase I) for univariate interval-censored data, to fit marginal Cox proportional hazards models for multiple diseases and clustered data and proportional rates/means models for recurrent events, and to provide model-checking procedures for both univariate and multivariate models. The correctness of the results will be certified in five clinical and epidemiological studies, and the sped-up code will be converted into a commercial-grade program with a graphical user interface and comprehensive documentation. Finally, a companion text will be written to document the software itself and serve as a substantive reference for researchers new to the field. The software program produced by this SBIR project will be a part of the Stata pack- age. This powerful and convenient software will enable biomedical investigators to analyze interval-censored data in a statistically efficient and unbiased manner. As such, this new tool will facilitate the search for effective inter- vention and prevention strategies for many common diseases (e.g., cancer, HIV/AIDS, diabetes, hypertension), thereby leading to improvements in public health.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yulia Marchenko其他文献

Yulia Marchenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yulia Marchenko', 18)}}的其他基金

Statistical Software for Genetic Association Studies
用于遗传关联研究的统计软件
  • 批准号:
    7843725
  • 财政年份:
    2007
  • 资助金额:
    $ 48.13万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.13万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了