Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
基本信息
- 批准号:10004706
- 负责人:
- 金额:$ 77.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmic SoftwareAlgorithmsApneaArtsBig DataBiological MarkersBradycardiaBreathingBronchopulmonary DysplasiaBudgetsCharacteristicsChronicChronic lung diseaseClinicalClinical ResearchClinical TrialsComputer ModelsComputersComputing MethodologiesDNADataData CollectionData Coordinating CenterData SecurityData SetDetectionEarly DiagnosisEventFundingFutureGoalsHealthHeart RateHigh Performance ComputingHome environmentIndividualInfantInvestigationLaboratoriesLeadershipLettersLung diseasesMaintenanceMedicalMissionModelingMonitorMorbidity - disease rateMulticenter StudiesNecrotizing EnterocolitisNeonatal Intensive Care UnitsOutcomeOutcome MeasurePathogenesisPatternPerformancePhenotypePhysiologicalPremature InfantPreventionPreventive measurePreventive treatmentProtocols documentationPublic HealthRecordsReportingResearchResourcesRespirationSecureSepsisSiteStatistical Data InterpretationStatistical ModelsStructureTechniquesTestingTimeTissuesU-Series Cooperative AgreementsUnited StatesUnited States National Institutes of HealthUniversitiesVirginiaWorkbiobankclinical databaseclinically significantcluster computingcohortcomputerized toolscostdata exchangedata managementdata privacydata resourceexperienceimprovedimproved outcomeinnovationmathematical modelnovelpredictive modelingprematurepreventprogramsprospectiveresearch facilityrespiratoryrespiratory morbidityresponsesignal processingtool
项目摘要
Project summary/abstract
Fundamental gaps in prevention of chronic lung disease in premature infants include the lack of
understanding of mechanisms by which maturation of ventilatory control allows maintenance of
adequate oxygenation, and how immature breathing phenotypes contribute to outcomes. Achieving
the long-term goal of trials of effective preventive measures and treatments includes detection and
analysis of immature breathing patterns in a large database of clinical information and
cardiorespiratory monitoring data from multiple Neonatal ICUs, including vital signs and waveforms.
The objectives of this proposal are (1) automated, validated detection of immature breathing patterns
by teams of clinicians and mathematicians, and (2) a Leadership and Data Coordination Center
(LDCC) for this NIH cooperative agreement to study a prospective observational cohort. The central
hypothesis is that quantification of immature breathing will identify physiological biomarkers that can
serve as targets for prevention and treatment that improve outcomes. A proposed multicenter protocol
has Aims 1 and 2 to develop predictive models for immature breathing, and to relate them to clinically
significant respiratory outcomes. The proposed LDCC builds on the experience of this university in
successful completion of the heart rate characteristics monitoring trial, the largest RCT in premature
infants, NIH-funded and completed on time and on budget. The computing requirements will be met by
a new University of Virginia Center and in concert with our partners Lawrence Livermore National
Laboratory and Intel Corporation. We will isolate and store DNA in our Biorepository and Tissue
Research Facility, and manage sites with our Clinical Trials Office. Large-scale computing clusters
dedicated for this work are in daily use. The contributions are expected to be (1) computational tools
for prediction of respiratory outcomes, and (2) effective LDCC performance in data management,
computational modeling, biorepository, and clinical studies management. The proposed research will
be significant because it is the first step in programs for better therapies and preventive measures for
chronic lung disease in premature infants. The proposed advanced analysis of monitoring data is
innovative because of the cutting edge solutions to advanced computing and data security that may
also inform other NIH multicenter studies of Big Data.
项目概要/摘要
预防早产儿慢性肺病的根本差距包括缺乏
理解进化控制的成熟允许维持
充分的氧合,以及不成熟的呼吸表型如何影响结果。实现
有效预防措施和治疗试验的长期目标包括检测和
分析大型临床信息数据库中的不成熟呼吸模式,
来自多个新生儿ICU的心肺监测数据,包括生命体征和波形。
该提案的目标是(1)自动化的、有效的检测不成熟的呼吸模式
由临床医生和数学家组成的团队,以及(2)领导和数据协调中心
(LDCC)的合作协议,以研究一个前瞻性的观察队列。中央
假设未成熟呼吸的量化将识别生理生物标志物,
作为预防和治疗的目标,以改善结果。拟定的多中心方案
目标1和2是开发未成熟呼吸的预测模型,并将其与临床相关
重要的呼吸结果。拟议的LDCC建立在该大学的经验,
成功完成心率特征监测试验,早产儿中最大的RCT
婴儿,NIH资助,并按时完成和预算。计算要求将通过以下方式得到满足:
一个新的弗吉尼亚大学中心,并与我们的合作伙伴劳伦斯利弗莫尔国家音乐会
实验室和英特尔公司。我们将在我们的生物储存库和组织中分离和储存DNA
研究机构,并与我们的临床试验办公室管理网站。大规模计算集群
专门用于这项工作的是日常使用。这些贡献预计将是(1)计算工具
用于预测呼吸结果,和(2)数据管理中的有效LDCC性能,
计算建模、生物储存库和临床研究管理。拟议的研究将
重要的是,这是更好的治疗和预防措施计划的第一步,
早产儿慢性肺病。拟议的监测数据高级分析是
创新,因为先进的计算和数据安全解决方案,
也为其他NIH多中心大数据研究提供了信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS E LAKE其他文献
DOUGLAS E LAKE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS E LAKE', 18)}}的其他基金
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
- 批准号:
9337265 - 财政年份:2016
- 资助金额:
$ 77.89万 - 项目类别:
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
- 批准号:
9170127 - 财政年份:2016
- 资助金额:
$ 77.89万 - 项目类别:
相似海外基金
Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
- 批准号:
133416 - 财政年份:2018
- 资助金额:
$ 77.89万 - 项目类别:
Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
- 批准号:
0916351 - 财政年份:2009
- 资助金额:
$ 77.89万 - 项目类别:
Standard Grant














{{item.name}}会员




