The Development and Experimental Verification of Computational Methods to Design and Predict the Properties of Therapeutic Proteins

设计和预测治疗性蛋白质特性的计算方法的开发和实验验证

基本信息

  • 批准号:
    10029424
  • 负责人:
  • 金额:
    $ 34.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary for The Development and Experimental Verification of Computational Methods to Design Therapeutic Proteins Therapeutic proteins are an important tool in modern medicine, and their use in treating serious illnesses such as cancer and autoimmune diseases continues to grow annually. Antibodies are one of the most important classes of therapeutic proteins. They occur naturally in the immune system, where they bind strongly and specifically to foreign molecules, acting as flags to the rest of the immune system by indicating the presence of materials that should be eliminated from the body. The use of antibodies by medical professionals allows them to guide patients’ immune responses to improve their health outcomes. Although antibodies offer tremendous benefits, they are not without their limitations. They are large, delicate proteins that are relatively expensive to produce, difficult to formulate at high concentrations, and sensitive to the conditions at which they are stored. Additionally, the experimental methods that are currently used to develop new antibodies are time consuming and while they can control the molecule the antibodies bind (i.e. antigens), it is extremely difficult to target specific regions (i.e. epitopes) of those molecules. Finally, there are many experimental and clinical applications where antibodies are currently used despite not being the most appropriate protein for the purpose because there are not convenient alternatives available. Advances in computational protein design over the last decade are poised to revolutionize the development of antibodies and other therapeutic proteins. Recently, the Pantazes Lab at Auburn University has created software capable of designing antibodies or any of 50+ other binding proteins in as little as a few minutes on a personal computer to bind any target epitope of any desired antigen. Preliminary experimental results of this method appear very promising. Over the next five years, the lab plans on building on this foundation to create a therapeutic protein development workflow with unprecedented flexibility. Proposed research includes: 1) Improving the computational design and selection criteria to enhance experimental viability, thereby providing end users confidence that what they design will function as predicted; 2) Expanding the design capabilities to include specific interactions, permitting the design of pH-sensitive binding proteins and enzymes; 3) Extending the design principles from binding proteins to peptides, enabling the design of any amino acid based binding moiety; and 4) Designing a synthetic binding protein with all of the benefits of antibodies and none of the drawbacks. Each project will involve both computational development as well as experimental validation. Altogether, this research will allow for the rapid design of an optimized binding protein for therapeutic applications. Whether it is developing personalized cancer treatments, fighting an antibiotic-resistant bacteria, or countering an emerging pandemic, doctors will be able to develop novel treatments in a timely manner.
计算机开发与实验验证项目综述

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert J Pantazes其他文献

Robert J Pantazes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert J Pantazes', 18)}}的其他基金

The Development and Experimental Verification of Computational Methods to Design and Predict the Properties of Therapeutic Proteins
设计和预测治疗性蛋白质特性的计算方法的开发和实验验证
  • 批准号:
    10448296
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
The Development and Experimental Verification of Computational Methods to Design and Predict the Properties of Therapeutic Proteins
设计和预测治疗性蛋白质特性的计算方法的开发和实验验证
  • 批准号:
    10256808
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
The Development and Experimental Verification of Computational Methods to Design and Predict the Properties of Therapeutic Proteins
设计和预测治疗性蛋白质特性的计算方法的开发和实验验证
  • 批准号:
    10655527
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:

相似海外基金

Rationally guided discovery platform for monoclonal antibodies against carbohydrate antigens using virus-like particle conjugate immunization and high throughput selection
使用病毒样颗粒缀合物免疫和高通量选择的合理引导的针对碳水化合物抗原的单克隆抗体的发现平台
  • 批准号:
    10574738
  • 财政年份:
    2023
  • 资助金额:
    $ 34.92万
  • 项目类别:
Assessing the role of liver stage antigens-specific antibodies against Plasmodium falciparum liver stage infection
评估肝期抗原特异性抗体对抗恶性疟原虫肝期感染的作用
  • 批准号:
    10392870
  • 财政年份:
    2021
  • 资助金额:
    $ 34.92万
  • 项目类别:
Generation of antibodies specific for optimal non-HRP2 malaria diagnostic antigens
生成最佳非 HRP2 疟疾诊断抗原的特异性抗体
  • 批准号:
    10092930
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
Generation of antibodies specific for optimal non-HRP2 malaria diagnostic antigens
生成最佳非 HRP2 疟疾诊断抗原的特异性抗体
  • 批准号:
    9896170
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
Interrogation of cell surface antigens on B lineage cells using structurally unique variable lymphocyte receptor antibodies of the evolutionarily distant sea lamprey
使用进化遥远的海七鳃鳗结构独特的可变淋巴细胞受体抗体询问 B 谱系细胞上的细胞表面抗原
  • 批准号:
    433456
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Operating Grants
Investigations of interactions between various natural antibodies and food-derived antigens
研究各种天然抗体与食物源性抗原之间的相互作用
  • 批准号:
    19K15765
  • 财政年份:
    2019
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identifying Kawasaki Disease-Specific Antibodies and Antigens
识别川崎病特异性抗体和抗原
  • 批准号:
    9932769
  • 财政年份:
    2018
  • 资助金额:
    $ 34.92万
  • 项目类别:
Novel Scoring Methods for Interactions between Antibodies and Antigens
抗体和抗原之间相互作用的新评分方法
  • 批准号:
    BB/P504713/1
  • 财政年份:
    2017
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Training Grant
Novel Scoring Methods for Interactions between Antibodies and Antigens
抗体和抗原之间相互作用的新评分方法
  • 批准号:
    1932904
  • 财政年份:
    2017
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Studentship
SBIR Phase II: Automated Design Methods of Antibodies Directed to Protein and Carbohydrate Antigens
SBIR II 期:针对蛋白质和碳水化合物抗原的抗体的自动化设计方法
  • 批准号:
    1632399
  • 财政年份:
    2016
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了