Structure and assembly of membrane proteins at tight junctions
紧密连接处膜蛋白的结构和组装
基本信息
- 批准号:10028808
- 负责人:
- 金额:$ 34.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseArchitectureBacterial ToxinsBiochemicalBioinformaticsBiophysicsBlood - brain barrier anatomyCell AdhesionCell membraneCellsChargeComplexDevelopmentDiseaseEar DiseasesEndothelial CellsEndotheliumEnvironmentEpidermisEpithelialEpithelial CellsEpitheliumExtracellular SpaceEye diseasesFamilyFood PoisoningFunctional disorderGlandGoalsHepatitisHumanHuntington DiseaseIndividualInflammatory Bowel DiseasesIntegral Membrane ProteinIonsKidneyKnowledgeLaboratoriesLimb structureLinkMalignant NeoplasmsMembraneMembrane ProteinsModificationMolecularMolecular ConformationMolecular DiseaseMolecular StructureOrganOrganismParkinson DiseasePathologyPermeabilityProteinsResearchShapesSideStrokeStructureTight JunctionsTissuesTransport ProcessVertebratesbasedesignexperimental studyfamily structureinsightinterdisciplinary approachmacromolecular assemblymembrane assemblynovel therapeuticsprogramsreconstructionscaffoldskin disordersmall moleculestructural biologywasting
项目摘要
Project Summary
Tight junctions (TJs) at the boundaries of endothelial and epithelial cells are critical in the development and
function of vertebrates because they enable these tissues to separate, protect, and shape external epidermis
and limbs and internal organs and glands. TJs regulate molecular transport through the spaces between
individual cells (paracellular) while adhering cellular sheets. TJs perform two vital functions in tissues: 1) form
barriers to restrict paracellular flux of small molecules, protecting organisms from the external environment and
separating internal body compartments; and 2) creating size- and charge-selective pores, allowing permeability
of ions that maintain electrochemical gradients. Numerous proteins amass at TJs to form the macromolecular
assemblies necessary for barrier and pore function. But two families of membrane proteins—claudins and
TAMPs (TJ-associated Marvel proteins)—predominate TJ assembly, architecture, and function. As these TJ
integral membrane proteins (TJIMPs) are the sole components to span intracellular, intramembraneous, and
extracellular space, they act as cytoskeletal scaffolds and assemble side-by-side within a membrane (cis) and
with TJIMPs from adjacent cell membranes (trans) to form barriers and pores. The molecular structure of TJs
is dynamic. Changes in protein composition, interaction, conformation, or modification—useful for assembling
TJs to precisely tune paracellular transport under normal conditions—can also be mis-assembled, resulting in
pathologies such as cancer, Alzheimer’s, Parkinson’s, Huntington’s, ALS, stroke, food poisoning and
inflammatory bowel disease, renal wasting, hepatitis, and diseases of the skin, eyes, and ears. Molecular level
insights into TJ structure and dynamics; the mechanisms of assembly that govern barrier and pore function;
and how disabling these mechanisms leads to pathologies, remain unresolved matters in our fundamental
understanding of TJs. We propose here a comprehensive research program that uses highly interdisciplinary
approaches to determine structure–interaction–function relationships between TJIMPs at dynamic TJ
microenvironments. These approaches integrate structural biology of TJIMPs and their complexes with
information obtained by traditional and state-of-the-art bioinformatics, biochemical, biophysical, and functional
experiments. The research program intends to resolve the underlying molecular principles of TJ assembly and
disassembly by confronting technical challenges and, in the near-term, by answering specific questions on
TJIMP interaction networks, the basis of gut barrier breakdown by a bacterial toxin, and the mechanisms of
TJIMP form and function at the blood-brain barrier. The long-term goal of our laboratory is to elucidate the
molecular bases for construction, destruction, and reconstruction of TJs, occurring both naturally or via
disease-causing mechanisms, and to use the achieved insights to advance design and development of novel
therapeutics to remedy TJ-related ailments.
项目概要
内皮细胞和上皮细胞边界处的紧密连接(TJ)对于细胞的发育和发育至关重要。
脊椎动物的功能,因为它们使这些组织能够分离、保护和塑造外表皮
以及四肢、内脏和腺体。 TJs 调节分子之间空间的运输
单个细胞(细胞旁),同时粘附细胞片。 TJ 在组织中执行两项重要功能:1) 形成
限制小分子旁细胞通量的屏障,保护生物体免受外部环境的影响,
分隔内部身体隔室; 2) 形成尺寸和电荷选择性孔,从而实现渗透性
维持电化学梯度的离子。许多蛋白质在 TJ 处聚集形成大分子
屏障和孔隙功能所需的组件。但是膜蛋白的两个家族——密蛋白和
TAMP(TJ 相关 Marvel 蛋白)——主导 TJ 组装、结构和功能。正如这些TJ
整合膜蛋白 (TJIMP) 是跨越细胞内、膜内和细胞膜的唯一成分。
在细胞外空间,它们充当细胞骨架支架并在膜内并排组装(顺式)和
与邻近细胞膜(反式)的 TJIMP 形成屏障和孔。 TJ的分子结构
是动态的。蛋白质组成、相互作用、构象或修饰的变化——对于组装有用
在正常条件下精确调节旁细胞运输的 TJ 也可能被错误组装,从而导致
癌症、阿尔茨海默病、帕金森病、亨廷顿舞蹈病、ALS、中风、食物中毒等病症
炎症性肠病、肾衰竭、肝炎以及皮肤、眼睛和耳朵疾病。分子水平
对 TJ 结构和动态的见解;控制屏障和孔隙功能的组装机制;
以及如何禁用这些机制会导致病态,这在我们的根本问题中仍然是悬而未决的问题
对TJ的理解。我们在此提出一个综合研究计划,该计划利用高度跨学科的方法
确定动态 TJ 下 TJIMP 之间的结构-相互作用-功能关系的方法
微环境。这些方法将 TJIMP 及其复合物的结构生物学与
通过传统和最先进的生物信息学、生物化学、生物物理和功能学获得的信息
实验。该研究计划旨在解决 TJ 组装的基本分子原理和
通过面对技术挑战并在短期内回答具体问题来进行拆卸
TJIMP 相互作用网络、细菌毒素破坏肠道屏障的基础及其机制
TJIMP 在血脑屏障中形成并发挥作用。我们实验室的长期目标是阐明
TJ 的构建、破坏和重建的分子基础,可以自然发生或通过
致病机制,并利用所获得的见解来推进新型药物的设计和开发
治疗 TJ 相关疾病的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex J. Vecchio其他文献
Cryo-EM structures of human claudin-4 in complex with its bacterial toxin antagonist enabled by synthetic antibody fragments reveal targeting mechanisms and therapeutic potential
- DOI:
10.1016/j.bpj.2021.11.1890 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Benjamin J. Orlando;Pawel K. Dominik;Sourav Roy;Chinemerem Ogbu;Satchal K. Erramilli;Anthony A. Kossiakoff;Alex J. Vecchio - 通讯作者:
Alex J. Vecchio
Structural basis of <em>Clostridium perfringens</em> enterotoxin activation and oligomerization by trypsin
- DOI:
10.1016/j.bpj.2023.11.2105 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Chinemerem P. Ogbu;Srajan Kapoor;Alex J. Vecchio - 通讯作者:
Alex J. Vecchio
Cryo-EM structures of emClostridium perfringens/em enterotoxin bound to its human receptor, claudin-4
产气荚膜梭菌肠毒素与其人类受体紧密连接蛋白-4 结合的低温电子显微镜结构
- DOI:
10.1016/j.str.2024.09.015 - 发表时间:
2024-11-07 - 期刊:
- 影响因子:4.300
- 作者:
Sewwandi S. Rathnayake;Satchal K. Erramilli;Anthony A. Kossiakoff;Alex J. Vecchio - 通讯作者:
Alex J. Vecchio
Alex J. Vecchio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex J. Vecchio', 18)}}的其他基金
Structure and assembly of membrane proteins at tight junctions
紧密连接处膜蛋白的结构和组装
- 批准号:
10224277 - 财政年份:2020
- 资助金额:
$ 34.94万 - 项目类别:
Structure and assembly of membrane proteins at tight junctions
紧密连接处膜蛋白的结构和组装
- 批准号:
10459311 - 财政年份:2020
- 资助金额:
$ 34.94万 - 项目类别:
Structure and assembly of membrane proteins at tight junctions
紧密连接处膜蛋白的结构和组装
- 批准号:
10389581 - 财政年份:2020
- 资助金额:
$ 34.94万 - 项目类别:
Structure and assembly of membrane proteins at tight junctions
紧密连接处膜蛋白的结构和组装
- 批准号:
10703392 - 财政年份:2020
- 资助金额:
$ 34.94万 - 项目类别:
Structural and Functional Investigation of Tight Junction Membrane Proteins
紧密连接膜蛋白的结构和功能研究
- 批准号:
8397606 - 财政年份:2012
- 资助金额:
$ 34.94万 - 项目类别:
Structural and Functional Investigation of Tight Junction Membrane Proteins
紧密连接膜蛋白的结构和功能研究
- 批准号:
8727069 - 财政年份:2012
- 资助金额:
$ 34.94万 - 项目类别:
Structural and Functional Investigation of Tight Junction Membrane Proteins
紧密连接膜蛋白的结构和功能研究
- 批准号:
8565650 - 财政年份:2012
- 资助金额:
$ 34.94万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 34.94万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 34.94万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 34.94万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 34.94万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 34.94万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 34.94万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 34.94万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 34.94万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 34.94万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 34.94万 - 项目类别: