Realistic Measurements of tDCS-Modulated Activity and Electric Fields in the Human Brain In Vivo
体内人脑 tDCS 调制活动和电场的真实测量
基本信息
- 批准号:10005411
- 负责人:
- 金额:$ 15.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnatomyAreaBehavioralBrainCenters of Research ExcellenceCharacteristicsClinicalComputer softwareDataData SetDefectDetectionDiseaseDoseElectrocorticogramElectroencephalographyElementsEnsureEpilepsyFeedbackFoundationsFundingFutureGoalsGrantHospitalsHumanImageIndividualInfrastructureIntractable EpilepsyMagnetic Resonance ImagingMeasurementMental DepressionMethodsModalityModelingModificationMotorMotor Evoked PotentialsOutcomePatient RecruitmentsPatientsPhysiologicalPopulationProceduresProcessProtocols documentationRecoveryRehabilitation therapyResolutionScalp structureSignal TransductionSolidSpinal cord injuryStrokeStructureSystemTechniquesTestingTimeTrainingTranscranial magnetic stimulationbasebehavioral outcomebrain abnormalitiesclinical caredosagedose individualizationelectric fieldimplantationimprovedimproved outcomein vivointer-individual variationmodels and simulationmultidisciplinarymultimodalityneurophysiologyneuropsychiatryneuroregulationnovelpatient safetyrecruitrehabilitation strategyrelating to nervous systemresponsesource localizationspatiotemporalstroke recoverysuccess
项目摘要
This project focuses on a neuroengineering approach to improve rehabilitative strategies involving non-invasive
brain stimulation (NIBS) technique called transcranial direct current stimulation (tDCS). tDCS is being
investigated heavily in recovery from a variety of neuropsychiatric conditions, including depression and stroke.
However, tDCS does not show consistent efficacy across subjects, which can be attributed to inter-individual
variability resulting from different strength of electric fields (EF) and resultant changes in neural activity. Such
variability in recovery can be decreased if tDCS therapy dose is titrated based on tDCS-generated EF and tDCS-
modulated neural activity. Non-invasive methods like scalp electroencephalography (EEG) are convenient to use
without involving invasive intracranial recording procedures, e.g., electrocorticography (ECoG) and/or
stereoencephalography (SEEG). However, the spatiotemporal resolution of EEG is suboptimal when compared
with ECoG/SEEG, probably because of volume conduction. Therefore, a transfer function that can achieve
ECoG/SEEG-level precision using EEG recordings is desirable. To that end, this project will establish a
framework of simultaneous recording of EEG, ECoG and/or SEEG along with tDCS application. Such a
framework will yield a transfer function that may be very useful to investigate tDCS dose-individualization based
on neural activity using non-invasive methods (e.g., EEG). Such an approach may be more reliable when
compared to a simulation model-based approach. Subjects with refractory epilepsy undergoing ECoG/SEEG
implantation serve as a natural model to investigate the real-time reactivity of neural system in response to tDCS.
The two overlapping areas to be investigated in this project are:
1. Can EEG-based extrapolations of tDCS-generated EF achieve accuracy comparable to ECoG/SEEG-
based extrapolations? ECoG/SEEG have superior spatiotemporal resolution compared to EEG, but are
invasive and therefore not practical in stroke subjects. Through analyzing simultaneous recording of both EEG
and ECoG/SEEG in subjects, new algorithms will be developed to extrapolate tDCS-generated EF using EEG
that can match the accuracy of ECoG/SEEG extrapolations.
2. How tightly correlated are scalp EEG and invasive ECoG/SEEG before/during/after tDCS application?
The first step towards understanding direct interaction of tDCS with neural activity is simultaneous administration
of tDCS and recording neural activity at various depths. Specialized recording setup is required to achieve this
and we plan to use clinical setup with some modifications, ensuring patient safety. Specialized software is
required to process the data towards accurate source localization of neural activity during tDCS administration,
and to compare EEG-based source localization with the ECoG/SEEG-based.
In the long term, our multidisciplinary team is confident to deliver a novel, non-invasive neural feedback-based,
neuromodulatory approach to tDCS dose-individualization towards efficacious recovery outcomes.
该项目的重点是神经工程的方法,以改善康复策略,包括非侵入性
脑刺激(NIBS)技术称为经颅直流电刺激(tDCS)。tDCS正在
在从各种神经精神疾病(包括抑郁症和中风)中恢复时进行了大量研究。
然而,tDCS在受试者中未显示一致的疗效,这可归因于个体间差异。
由不同电场强度(EF)引起的变异性以及由此引起的神经活动的变化。等
如果根据tDCS产生的EF和tDCS滴定tDCS治疗剂量,则可降低恢复的变异性。
调节神经活动头皮脑电图(EEG)等非侵入性方法使用方便
而不涉及侵入性颅内记录过程,例如,皮质电图(ECoG)和/或
脑立体图(SEEG)。然而,EEG的时空分辨率是次优的,
ECoG/SEEG,可能是因为容量传导。因此,可以实现的传递函数
使用EEG记录的ECoG/SEEG级精度是期望的。为此,该项目将建立一个
同时记录EEG、ECoG和/或SEEG沿着tDCS应用的框架。这样的
框架将产生一个传递函数,这可能是非常有用的研究tDCS剂量个性化的基础上,
使用非侵入性方法(例如,EEG)。这种方法可能更可靠,
与基于模拟模型的方法相比。接受ECoG/SEEG的难治性癫痫受试者
植入作为研究神经系统对tDCS响应的实时反应性的自然模型。
本项目将调查的两个重叠领域是:
1.基于EEG的tDCS产生的EF外推是否能达到与ECoG/SEEG相当的准确性-
基于外推?与EEG相比,ECoG/SEEG具有上级时空分辨率,但
侵入性的,因此在中风受试者中不实用。通过分析同时记录的两个EEG
和受试者的ECoG/SEEG,将开发新的算法来使用EEG外推tDCS产生的EF
可以匹配ECoG/SEEG外推的准确性。
2.在tDCS应用之前/期间/之后,头皮EEG和侵入性ECoG/SEEG的相关性如何?
理解tDCS与神经活动直接相互作用的第一步是同时给药
记录不同深度的神经活动。需要专门的记录设置来实现这一点
我们计划使用经过一些修改的临床设置,以确保患者安全。专业软件是
需要处理数据以在tDCS施用期间实现神经活动的准确源定位,
并将基于EEG的源定位与基于ECoG/SEEG的源定位进行比较。
从长远来看,我们的多学科团队有信心提供一种新的,非侵入性的神经反馈为基础的,
tDCS剂量个体化的神经调节方法,以实现有效的恢复结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pratik Yashvant Chhatbar其他文献
Pratik Yashvant Chhatbar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 15.77万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 15.77万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 15.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 15.77万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 15.77万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 15.77万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 15.77万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 15.77万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 15.77万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 15.77万 - 项目类别:
Research Grant














{{item.name}}会员




