TCPA: an Integrated Bioinformatics Resource for Functional Cancer Proteomic Data
TCPA:功能性癌症蛋白质组数据的综合生物信息学资源
基本信息
- 批准号:10006080
- 负责人:
- 金额:$ 68.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAlgorithmsAntibodiesApoptosisAtlasesBiological AssayBiological MarkersCancer CenterCell CycleCell LineClinicalClinical DataCommunitiesComplementComplexComputer softwareDNA DamageDataData CollectionData SetDatabasesDevelopmentDocumentationDrug TargetingEducational workshopExperimental DesignsFRAP1 geneFaceFeedbackFunctional disorderGenerationsGenomeGoalsHumanImmuneInformaticsInternetKnowledgeLettersLinkLiteratureMAP Kinase GeneMalignant NeoplasmsMiningMissionMolecularNetwork-basedOutcomePaperPathway interactionsPatientsPhaseProcessProtein ArrayProteinsProteomeProteomicsPublic HealthQuality ControlReproducibilityResearch PersonnelResistanceSamplingSignal PathwaySiteSoftware EngineeringStandardizationTechnologyThe Cancer Genome AtlasTherapeuticTransforming Growth Factor betaTranslationsUnited States National Institutes of HealthUniversity of Texas M D Anderson Cancer CenterVisualizationanticancer researchbasebioinformatics resourcebioinformatics toolburden of illnesscancer genomecancer proteomicscancer therapycohortcomputerized data processingcost effectivedisabilitydrug sensitivityexperiencegenome browserimprovedmultidisciplinaryopen sourceprecision oncologyprognosticprogramsprotein biomarkersresearch and developmentresponsesuccesstechnology validationtooltreatment responseuser-friendlyweb platform
项目摘要
SUMMARY/ABSTRACT
Reverse-phase protein arrays (RPPAs) offer a powerful functional proteomic approach to investigate molecular
mechanisms and response to therapy in cancer. MD Anderson Cancer Center has been a leader in the
implementation of this antibody-based technology that can assess many protein markers across large numbers
of samples in a cost-effective, sensitive and high-throughput manner. The platform currently assesses ~300
protein markers, covering all major signaling pathways and most drug targets. Its utility was demonstrated
through its selection as the sole platform for characterizing >10,000 patient samples through The Cancer
Genome Atlas (TCGA); and recently it has been designated as one of two NCI Genome Characterization
Centers, and will characterize up to ~10,000 samples from ongoing NCI initiatives and other consortium
projects. For TCGA project, the applicants built The Cancer Proteome Atlas (TCPA), a web platform for
visualizing and analyzing RPPA data, which has a community of >5,000 users worldwide. The long-term goal
is to promote the ability of functional proteomics to impact cancer research and the development of relevant
therapeutic strategies. The current objective is to expand the scope of TCPA by adding new functionalities and
datasets, and to enhance and improve its existing analytic capabilities. Working relationships have been
formed to link TCPA with other widely used bioinformatic resources (e.g., cBio, UCSC Genome Browsers,
Firehose and Synpase) and other ITCR projects. An experienced, multidisciplinary team has been assembled
to pursue four specific aims: Aim #1. Develop an open source, all-in-one software package for processing
RPPA data. This effort will standardize each informatic step for RPPA data generation including experimental
design, quality control, and data normalization. The resultant program will be exported to other RPPA facilities.
Aim #2. Expand and enhance our existing web platform for the analysis of patient-cohort RPPA data. The web
platform will cover other patient cohorts, incorporate other types of molecular/clinical data, and provide
pathway/network-based analytics. Aim #3. Build a user-friendly, interactive, open web platform for the analysis
of cell line RPPA data. This effort will collect and compile RPPA data of >1,500 cell lines, and develop a web
platform parallel to Aim #2. Aim #4. Promote TCPA and active interaction with the user community. This effort
will provide documentation, hands-on workshops, and bug fixes, and build web APIs for interaction with other
tools. The expected outcome is the first, dedicated bioinformatic resource that fully integrates RPPA data
generation, analysis and user feedback, allowing for fluent exploration and analysis of high-quality proteomic
data in a rich context. The project is important because it will greatly enhance the quality and reproducibility of
RPPA data from important consortium projects; substantially reduce barriers biomedical researchers face in
mining complex functional proteomic data; serve as a hub for integrating proteomic data into other widely used
bioinformatic resources; and directly facilitate development of protein markers for precision cancer medicine.
摘要/摘要
反相蛋白阵列 (RPPA) 提供了一种强大的功能蛋白质组学方法来研究分子
癌症治疗的机制和反应。 MD 安德森癌症中心一直是该领域的领导者
实施这种基于抗体的技术,可以评估大量蛋白质标记
以经济高效、灵敏且高通量的方式提取样品。该平台目前评估约 300
蛋白质标记物,涵盖所有主要信号通路和大多数药物靶点。它的实用性得到了证明
通过 The Cancer 选择其作为表征 > 10,000 个患者样本的唯一平台
基因组图谱(TCGA);最近它被指定为两个 NCI 基因组表征之一
中心,并将表征来自正在进行的 NCI 计划和其他联盟的多达约 10,000 个样本
项目。对于 TCGA 项目,申请人建立了癌症蛋白质组图谱 (TCPA),这是一个网络平台,用于
可视化和分析 RPPA 数据,该数据在全球拥有超过 5,000 个用户的社区。长期目标
旨在提高功能蛋白质组学影响癌症研究和相关技术开发的能力
治疗策略。当前的目标是通过添加新功能和扩展 TCPA 的范围
数据集,并增强和改进其现有的分析能力。工作关系已
旨在将 TCPA 与其他广泛使用的生物信息资源(例如 cBio、UCSC 基因组浏览器、
Firehose 和 Synpase)以及其他 ITCR 项目。一支经验丰富的多学科团队已经组建
追求四个具体目标: 目标#1。开发一个开源、一体化的处理软件包
RPPA 数据。这项工作将标准化 RPPA 数据生成的每个信息步骤,包括实验
设计、质量控制和数据标准化。由此产生的程序将被导出到其他 RPPA 设施。
目标#2。扩展和增强我们现有的网络平台,用于分析患者队列 RPPA 数据。网络
平台将覆盖其他患者群体,整合其他类型的分子/临床数据,并提供
基于路径/网络的分析。目标#3。构建用户友好、交互式、开放的网络分析平台
细胞系 RPPA 数据。这项工作将收集和编译超过 1,500 个细胞系的 RPPA 数据,并开发一个网络
与目标 #2 平行的平台。目标#4。促进 TCPA 并与用户社区积极互动。这个努力
将提供文档、实践研讨会和错误修复,并构建 Web API 以与其他人交互
工具。预期成果是第一个完全集成 RPPA 数据的专用生物信息资源
生成、分析和用户反馈,从而可以流畅地探索和分析高质量的蛋白质组
丰富上下文中的数据。该项目很重要,因为它将大大提高研究的质量和可重复性
来自重要联合体项目的 RPPA 数据;大大减少生物医学研究人员在研究中面临的障碍
挖掘复杂的功能蛋白质组数据;作为将蛋白质组数据整合到其他广泛使用的数据中的枢纽
生物信息资源;并直接促进精准癌症医学蛋白质标记物的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Han Liang其他文献
Brain metastases: nanomedicine-boosted diagnosis and treatment
- DOI:
10.1016/j.medidd.2021.100111 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Han Liang - 通讯作者:
Han Liang
Han Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Han Liang', 18)}}的其他基金
Characterization and modeling of m6A RNA methylation in cancer
癌症中 m6A RNA 甲基化的表征和建模
- 批准号:
10027689 - 财政年份:2020
- 资助金额:
$ 68.92万 - 项目类别:
Characterization and modeling of m6A RNA methylation in cancer
癌症中 m6A RNA 甲基化的表征和建模
- 批准号:
10415211 - 财政年份:2020
- 资助金额:
$ 68.92万 - 项目类别:
Characterization and modeling of m6A RNA methylation in cancer
癌症中 m6A RNA 甲基化的表征和建模
- 批准号:
10650817 - 财政年份:2020
- 资助金额:
$ 68.92万 - 项目类别:
Characterization and modeling of m6A RNA methylation in cancer
癌症中 m6A RNA 甲基化的表征和建模
- 批准号:
10245143 - 财政年份:2020
- 资助金额:
$ 68.92万 - 项目类别:
TCPA: an Integrated Bioinformatics Resource for Functional Cancer Proteomic Data
TCPA:功能性癌症蛋白质组数据的综合生物信息学资源
- 批准号:
9654991 - 财政年份:2016
- 资助金额:
$ 68.92万 - 项目类别:
TCPA: an Integrated Bioinformatics Resource for Functional Cancer Proteomic Data
TCPA:功能性癌症蛋白质组数据的综合生物信息学资源
- 批准号:
9184861 - 财政年份:2016
- 资助金额:
$ 68.92万 - 项目类别:
TCPA: an Integrated Bioinformatics Resource for Functional Cancer Proteomic Data
TCPA:功能性癌症蛋白质组数据的综合生物信息学资源
- 批准号:
9764286 - 财政年份:2016
- 资助金额:
$ 68.92万 - 项目类别:
Systematic Functional Characterization of RNA Editing in Endometrial Cancer
子宫内膜癌 RNA 编辑的系统功能表征
- 批准号:
8630743 - 财政年份:2014
- 资助金额:
$ 68.92万 - 项目类别:
Systematic Functional Characterization of RNA Editing in Endometrial Cancer
子宫内膜癌 RNA 编辑的系统功能表征
- 批准号:
9027814 - 财政年份:2014
- 资助金额:
$ 68.92万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 68.92万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 68.92万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 68.92万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 68.92万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 68.92万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 68.92万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 68.92万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 68.92万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 68.92万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 68.92万 - 项目类别:
Research Grant














{{item.name}}会员




