Exercise-induced recovery of intervertebral disc health
运动引起的椎间盘健康恢复
基本信息
- 批准号:10039220
- 负责人:
- 金额:$ 8.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAgeAnabolismAnatomyAnimal ModelAnimalsBack PainBenchmarkingBiological AssayBlood VesselsCartilageCell SurvivalCell membraneCellsCellular biologyCharacteristicsClinicalControl GroupsConvectionDevicesDiagnosisDiagnostic radiologic examinationDiffusionDiffusion Magnetic Resonance ImagingDiseaseDoseElderlyExcisionExerciseFrequenciesFutureGLUT-1 proteinGeometryGlucoseGlucose TransporterGoalsHealthHomeostasisHumanImageIntervertebral disc structureLiquid substanceLiteratureLow Back PainMagnetic Resonance ImagingMeasuresMembrane Transport ProteinsModelingNutrientOperative Surgical ProceduresOxygenPET/CT scanPainPatientsPeripheralPorosityProcessProtocols documentationRattusRecoveryRunningSpeedStructureSystemTestingTrainingTranslatingTranslationsVertebral columnWorkage relatedagedclinical implementationdisabilitydisc regenerationexercise intensityexercise programexperiencefluorodeoxyglucoseglucose uptakegraspimaging modalityimprovedin vivoinstrumentintervertebral disk degenerationnon-invasive imagingpain outcomepain sensitivityperipheral painprogramsprotein expressionradiotracerregenerativeresponsesample fixationsolutespine bone structuretranslational pipelinetreadmillwastingyoung adult
项目摘要
Project Summary
The lumbar intervertebral discs naturally degenerate with age and are implicated in low back pain, the
world’s leading cause of disability. Because the discs are avascular, cells residing in the central disc are up to
6-8 mm from the nearest blood vessel in adults. To maintain homeostasis, disc cells rely on diffusion and
convection between the discs and adjacent vertebrae for nutrient transport and waste removal. When transport
is compromised, local glucose and oxygen concentrations decrease, pH decreases, and cell viability and
matrix turnover are impacted. Currently, there are no clinical strategies to intervene in age-related
degeneration, but improving fluid transport may be one strategy to slow or reverse the process.
Previous work in animals instrumented with external loading devices suggests that dynamic loading
increases the rate of solutes transported into the discs and causes disc anabolism. One way to induce loading
in vivo is through exercise and running exercise was recently related to improved disc health in animals and
humans. Still, it is not clear how in vivo loading modulates fluid and nutrient transport and which exercise
protocols induce the appropriate dynamic loads. Exercise dosing is likely an important factor, however there is
a “complete lack of studies in the exercise and pain literature testing multiple doses of exercise in a single
patient (or control) group”. The objective of this work is to identify factors that affect fluid and nutrient
transport and implement an exercise protocol that optimizes transport for disc regeneration.
In Aim 1, rats of young, adult, and advanced ages will be evaluated for differences in exercise-induced
disc fluid transport and factors related to fluid transport (cartilage endplate porosity, disc deformations during
activity) as well as exercise-induced cellular glucose uptake and factors that affect glucose uptake (cell
membrane transporters). In Aim 2, rats of young and advanced ages will be evaluated while executing one of
6 8-week treadmill programs of varying intensity for changes in disc function, composition, structure, and pain.
In Aim 3, rats with surgically-induced degeneration will be evaluated while executing an 8-week treadmill
program for changes in disc function, composition, structure, and pain. There will be two control groups to
determine the specific impact of exercise-induced loading.
My goal is to develop a translational pipeline to test and iterate disc regeneration strategies in
animals and seamlessly import those into humans. The results from this study will identify exercise
protocols that maximize disc fluid transport, glucose uptake, and disc health and can be translated to humans
for disc regeneration.
项目摘要
腰间盘随着年龄的增长而自然退化,并与下腰痛有关,
是世界上导致残疾的主要原因。因为椎间盘是无血管的,所以驻留在中央椎间盘中的细胞高达
成人距最近血管6~8 mm。为了维持动态平衡,视盘细胞依靠扩散和
椎间盘和相邻椎骨之间的对流,用于营养物质的运输和废物的清除。当运输时
受损,局部葡萄糖和氧气浓度下降,pH下降,细胞活力和
矩阵周转受到影响。目前,还没有干预年龄相关疾病的临床策略。
但改善液体运输可能是减缓或逆转这一过程的一种策略。
之前在装有外部加载装置的动物身上所做的工作表明,动态加载
增加溶质进入圆盘的速度,并导致圆盘合成代谢。一种诱导负荷的方法
在活体内通过运动和跑步运动最近被认为与改善动物的椎间盘健康有关
人类。然而,目前还不清楚体内负荷如何调节液体和营养物质的运输,以及哪些运动
协议会产生适当的动态负载。运动量可能是一个重要因素,但也有
运动和疼痛文献中完全缺乏对一次多剂量运动进行测试的研究
患者(或对照)组。这项工作的目的是确定影响液体和营养的因素
运输和实施锻炼方案,以优化光盘再生的运输。
在目标1中,年轻、成年和高龄的大鼠将被评估运动诱导的差异。
关节盘液体传输及其相关因素(软骨终板孔隙率、关节盘变形
活动)以及运动诱导的细胞葡萄糖摄取和影响葡萄糖摄取的因素(细胞
膜转运蛋白)。在目标2中,将评估年轻和高龄大鼠在执行以下操作之一时的情况
6个为期8周的不同强度的跑步机计划,以观察椎间盘功能、成分、结构和疼痛的变化。
在目标3中,将在执行为期8周的跑步机时对手术诱导的变性大鼠进行评估。
改变椎间盘功能、成分、结构和疼痛的程序。将有两个控制组
确定运动负荷的具体影响。
我的目标是开发一个翻译流水线来测试和迭代光盘再生策略
并无缝地将这些动物输入人类体内。这项研究的结果将确定锻炼
最大限度地提高间盘液体运输、葡萄糖摄取和间盘健康的方案,并可以翻译成人类
用于光盘再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Martin其他文献
John Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Martin', 18)}}的其他基金
Exercise-Induced Recovery of Intervertebral Disc Health
运动引起的椎间盘健康恢复
- 批准号:
10745782 - 财政年份:2023
- 资助金额:
$ 8.36万 - 项目类别:
Exercise-induced recovery of intervertebral disc health
运动引起的椎间盘健康恢复
- 批准号:
10264800 - 财政年份:2020
- 资助金额:
$ 8.36万 - 项目类别:
Age-related alterations in the in vivo mechanical function of the spine
脊柱体内机械功能与年龄相关的改变
- 批准号:
9766073 - 财政年份:2017
- 资助金额:
$ 8.36万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 8.36万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 8.36万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 8.36万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 8.36万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 8.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 8.36万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 8.36万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 8.36万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 8.36万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 8.36万 - 项目类别:
Miscellaneous Programs