Epigenetic Reprogramming to Counteract Neuronal Aging and Degeneration
表观遗传重编程对抗神经元衰老和退化
基本信息
- 批准号:10039205
- 负责人:
- 金额:$ 11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:APP-PS1AcuteAdultAgeAge-associated memory impairmentAgingAlzheimer&aposs DiseaseAreaAwardAxonBehavioralBioinformaticsBirthBlindnessBrainBrain regionCNS degenerationCandidate Disease GeneCell CycleCell SurvivalCellsCharacteristicsChemicalsChronicCollaborationsComplexConsultationsCrossbreedingCrush InjuryDNADNA MethylationDataDementiaDependovirusDeteriorationDevelopment PlansDiseaseEctopic ExpressionElectrophysiology (science)EnvironmentEpigenetic ProcessEtiologyFamily health statusGene ExpressionGene SilencingHippocampus (Brain)HistologicHistological TechniquesHistone AcetylationHistonesImpaired cognitionImpairmentIn VitroIncidenceInjuryKnowledgeLearningLinkMammalsMediatingMemoryMentorsMentorshipModelingMolecularMolecular StructureMusNatural regenerationNatureNerve DegenerationNerve RegenerationNeuraxisNeurodegenerative DisordersNeuronal PlasticityNeuronsNeuropathyNeurosciencesOptic NervePathogenesisPathologicPatientsPhasePhysiologicalPost-Translational Protein ProcessingPropertyProsencephalonPublic HealthRejuvenationResearchRetinaRetinal Ganglion CellsRetrievalRoleStructureSynaptic plasticitySystemTechnologyTestingTetracyclinesTherapeuticTherapeutic EffectTrainingVincristineVisionWorkage relatedagedaging brainaxon regenerationaxonal degenerationbasebehavior testcareer developmentcell agecognitive functioneffective therapyepigenomeepigenomicsexperimental studyfunctional declinegenome-widegenome-wide analysisimprovedinhibitor/antagonistinsightmedical schoolsmethylomicsmouse modelneuron lossneuronal survivalneurophysiologynovelpathological agingpreventprogramsregenerativetherapeutic evaluationtranscriptometranscriptome sequencing
项目摘要
Project Summary/Abstract
The aging brain is increasingly susceptible to cognitive decline and dementia. Alzheimer’s disease (AD), a main
form of dementia, is an extreme, pathological manifestation of brain aging. However, the etiology and
pathogenesis of AD are not well understood, causing the dearth of effective treatments. Mounting evidence has
implicated epigenetic changes, such as DNA methylation and histone acetylation, in neuronal aging and
degeneration, raising the hypothesis that resetting these epigenetic changes and restoring a youthful epigenome
may increase neuroplasticity and forestall disease. We have recently discovered that epigenetic reprogramming
by coexpression of three Yamanaka factors, Oct4, Sox2, and Klf4 (OSK), can induce axon regeneration in retinal
ganglion cells (RGCs), a type of central nervous system (CNS) neuron, after acute injury. Furthermore, OSK
expression in RGCs of old mice reversed aging-associated transcriptome changes, reset the DNA methylation
age of the cells, and restored vision to a level similar to young mice, suggesting neuronal rejuvenation.
Importantly, cell cycle, cell identity, and intrinsic electrophysiological properties of postmitotic neurons were not
affected by OSK reprogramming. In this proposal, I seek to identify the epigenetic mechanisms that underlie
OSK-mediated axon regeneration (Aim 1), determine whether epigenetic reprogramming in brain neurons
reverses age-associated cognitive decline and epigenomic changes (Aim 2), and investigate the role of
epigenetic changes in the progression of AD (Aim 3). A new mouse model that allows temporal control of
epigenetic reprogramming in the forebrain neurons will be used to evaluate the therapeutic effect of epigenetic
reprogramming in AD through a combination of molecular, physiological, behavioral, and histological techniques.
Based on our preliminary results, I hypothesize that reversal of the aging epigenome in CNS neurons will improve
neuronal plasticity and restore cognitive function that are impaired due to aging and Alzheimer’s disease. This
work will provide novel insights into the etiology of AD, identify the epigenetic links between aging and AD, and
may reveal a new realm of therapeutics. Aims 1 and 2 will be performed predominantly during the K99 phase
under the mentorship of Dr. David Sinclair, a leader in aging and epigenetics; Dr. Edward Boyden, a world-
renowned neuroscientist; and Dr. Steve Horvath, an expert in DNA methylation and aging. Aim 3 will be
performed predominantly during the R00 phase. The mentorship program and proposed research will allow me
to gain rigorous scientific training in neuroscience and bioinformatics, specializing in neurodegeneration,
neurophysiology, and genome-wide epigenetic analysis. In addition, in conducting the K99 phase at Harvard
Medical School, my work will benefit from the highly collaborative research environment, state-of-the-art
technologies and facilities, and world-renowned experts available for collaboration and consultation. The award
will enable an in-depth career development plan for me to expand the scope of my research and launch an
independent research program focused on studying epigenetic mechanisms of neuronal aging and degeneration.
项目摘要/摘要
衰老的大脑越来越容易受到认知能力下降和痴呆症的影响。阿尔茨海默氏病(AD),主要
痴呆的形式是脑老化的极端病理表现。但是,病因和
AD的发病机理尚不清楚,导致有效治疗的死亡。越来越多的证据有
暗示的表观遗传变化,例如DNA甲基化和组蛋白乙酰化,神经元衰老和
退化,提出了重置这些表观遗传变化并恢复年轻表观基因组的假设
可能会增加神经可塑性和防止疾病。我们最近发现表观遗传重编程
通过共表达Yamanaka因子Oct4,Sox2和KLF4(OSK),可以诱导残留的轴突再生
急性损伤后,神经节细胞(RGC)是一种类型的中枢神经系统(CNS)神经元。此外,OSK
在旧小鼠的RGC中的表达反向衰老相关的转录组变化,重置DNA甲基化
细胞的年龄,并将视力恢复到类似于年轻小鼠的水平,表明神经元修订。
重要的是,细胞周期,细胞身份和有丝分裂神经元的内在电生理特性不是
受OSK重新编程的影响。在此提案中,我试图确定基于的表观遗传机制
OSK介导的轴突再生(AIM 1),确定表观遗传重编程是否在脑神经元中
逆转与年龄相关的认知下降和表观基因组变化(AIM 2),并研究
AD进展的表观遗传变化(AIM 3)。允许暂时控制的新鼠标模型
前脑神经元中的表观遗传重编程将用于评估表观遗传学的治疗作用
通过分子,物理,行为和组织学技术的组合在AD中重新编程。
根据我们的初步结果,我假设CNS神经元中衰老表观组的逆转将改善
神经元的可塑性和恢复认知功能受到衰老和阿尔茨海默氏病的损害。这
工作将为AD的病因提供新颖的见解,确定衰老与AD之间的表观遗传联系,以及
可能会揭示一个理论的新领域。目标1和2将主要在K99期间进行
在衰老和表观遗传学领导者戴维·辛克莱(David Sinclair)博士的心态下;爱德华·博伊登(Edward Boyden)博士,世界 -
著名的神经科学家; DNA甲基化和衰老专家Steve Horvath博士。 AIM 3将是
主要在R00阶段进行。 Mentalship计划和拟议的研究将使我
为了获得神经科学和生物信息学方面的严格科学培训,专门研究神经变性,
神经生理学和全基因组的表观遗传分析。另外,在哈佛进行K99阶段
医学院,我的工作将受益于高度协作的研究环境,最先进的
技术和设施以及世界知名的专家可用于协作和咨询。奖项
将为我提供深入的职业发展计划,以扩大我的研究范围并启动
独立研究计划的重点是研究神经元衰老和变性的表观遗传机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAO TIAN其他文献
XIAO TIAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAO TIAN', 18)}}的其他基金
Epigenetic Reprogramming to Counteract Neuronal Aging and Degeneration
表观遗传重编程对抗神经元衰老和退化
- 批准号:
10220841 - 财政年份:2020
- 资助金额:
$ 11万 - 项目类别:
Epigenetic Reprogramming to Counteract Neuronal Aging and Degeneration
表观遗传重编程对抗神经元衰老和退化
- 批准号:
10598976 - 财政年份:2020
- 资助金额:
$ 11万 - 项目类别:
相似国自然基金
去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
- 批准号:81900151
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
- 批准号:81870113
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
- 批准号:81570122
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
- 批准号:81470309
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
- 批准号:31270885
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Targeting P2RX7 Signaling as a Biomarker for ADRD
将 P2RX7 信号作为 ADRD 生物标志物
- 批准号:
10739960 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Roles of neuroestradiol in comorbid hyperexcitability and seizure susceptibility in Alzheimer Disease
神经雌二醇在阿尔茨海默病共病过度兴奋和癫痫易感性中的作用
- 批准号:
10453981 - 财政年份:2022
- 资助金额:
$ 11万 - 项目类别:
Disruption of neuronal signaling in Alzheimer’s disease and rescue by manipulating the innate immune receptor PirB
阿尔茨海默病神经元信号传导的破坏以及通过操纵先天免疫受体 PirB 进行挽救
- 批准号:
10403425 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Disruption of neuronal signaling in Alzheimer’s disease and rescue by manipulating the innate immune receptor PirB
阿尔茨海默病神经元信号传导的破坏以及通过操纵先天免疫受体 PirB 进行挽救
- 批准号:
10231468 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Epigenetic Reprogramming to Counteract Neuronal Aging and Degeneration
表观遗传重编程对抗神经元衰老和退化
- 批准号:
10220841 - 财政年份:2020
- 资助金额:
$ 11万 - 项目类别: