A Pragmatic Latent Variable Learning Approach Aligned with Clinical Practice
符合临床实践的实用潜变量学习方法
基本信息
- 批准号:10033908
- 负责人:
- 金额:$ 56.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-08 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnxietyAnxiety DisordersAttentionAttention deficit hyperactivity disorderBrainCaringCessation of lifeClinicalClinical ResearchCommunicationComplexDataDecision MakingDevelopmentDiabetes MellitusDiagnosisEnsureFutureGoalsHealthHeartHybridsHyperglycemiaIntentionLabelLearningLogistic RegressionsMachine LearningMalignant NeoplasmsManicMeasuresMethodologyMethodsModelingMotivationNatureOutcomeOutcome MeasurePatient-Focused OutcomesPatientsPerformanceProcessPsychometricsPublic HealthReproducibilityResearchResearch PersonnelRiskSamplingScienceSideStructureSupervisionSymptomsSystemTechniquesTimeValidationVariantbaseclinical practiceclinical riskcomorbiditydata explorationflexibilityhealth care servicehigh dimensionalityimprovedimproved outcomeinterestmodel developmentneglectpersonalized carepersonalized medicinepredictive modelingpreventprognosticrisk prediction modelsimulationsupervised learningtooltreatment planningunsupervised learning
项目摘要
Abstract
With growing interest in personalized medicine and the rise of machine learning, constructing good risk
prediction and prognostic models has been drawing renewed attention. In this development, much effort
is concentrated in identifying good predictors of patient outcomes, although the same level of rigor is often
absent in improving the outcome side of prediction. The majority of popular supervised techniques (e.g.,
regularized logistic regression and its variations), which can be readily applied in risk model development,
assumes that the prediction target is a clear single outcome measured at a single time point. In clinical
reality, patient outcomes are often complex, multivariate, and measured with errors. Even when a target
is a relatively clear univariate outcome (e.g., death, cancer, diabetes, etc), the process that leads to this
ultimate outcome often involves complex intermediate outcomes, where predicting and understanding this
intermediate process can be crucial in providing effective care and preventing negative ultimate outcomes.
The situation calls for a flexible learning framework that can easily incorporate this important but neglected
aspect in model development - better characterizing and constructing prediction targets before building
prediction models.
Focusing on risk labels as prediction targets, we propose a pragmatic 3-stage learning approach,
where we sequentially 1) generate latent labels, 2) validate them using explicit validators, and 3) go on
with supervised learning with labeled data. Latent variable (LV) strategies used in Satge 1 have great
potentials in handling complex outcome information. The unsupervised nature of LV strategies makes
highly flexible data synthesis and organization possible. The same nature, however, can also be seen
as esoteric and subjective, which is not desirable in situations where transparency and reproducibility are
of great concern such as in risk prediction. As a practical solution to this problem, we propose the use
of explicit clinical validators, which not only makes LV-based labels closely aligned with contemporary
science and clinical practice, but also makes it possible to automatically validate and narrow a large
pool of candidate labels. With the goal of developing a practical and transparent system of learning
and inference for clinical research and practice, we formed a highly interdisciplinary team of researchers
with expertise in latent variable modeling, machine learning, psychometrics and causal inference along
with clinical/substantive expertise. Our streamlined learning framework focuses on direct and transparent
validation of latent variable solutions to ensure clear communication across risk model developers, clinical
researchers and practitioners. The project ultimately aims to improve personalized treatment and care by
improving risk prediction.
摘要
随着个性化医疗的兴趣与日俱增和机器学习的兴起,构建良好的风险
预测和预测模型重新引起了人们的关注。在这个发展中,付出了很大的努力
集中于确定对患者结果的良好预测因素,尽管相同水平的严谨性通常
没有改进预测的结果方面。大多数流行的监督技术(例如,
正则化Logistic回归及其变种),其可容易地应用于风险模型开发,
假设预测目标是在单个时间点测量的明确的单一结果。在临床上
事实上,患者的结果往往是复杂的、多变量的,并用误差来衡量。即使当一个目标
是相对明确的单变量结果(例如,死亡、癌症、糖尿病等),这是导致这一结果的过程
最终结果通常涉及复杂的中间结果,其中预测和理解这一点
中间过程在提供有效护理和防止消极的最终结果方面可能是至关重要的。
这种情况需要一个fl可扩展的学习框架,可以很容易地结合这一重要但被忽视的学习框架
模型开发方面-在构建之前更好地描述和构建预测目标
预测模型。
以风险标签为预测目标,提出了一种实用的三阶段学习方法,
我们按顺序1)生成潜在标签,2)使用显式验证器验证它们,3)继续
使用带有标签的数据的监督学习。潜变量(LV)策略在SATGE 1中有很大的应用
在处理复杂结果信息方面的潜力。LV策略的无监督性质使得
高度可扩展的fl数据合成和组织成为可能。然而,同样的性质也可以看到
因为深奥和主观,这在透明度和重现性很差的情况下是不可取的
非常令人担忧的,例如在风险预测方面。作为这个问题的实际解决方案,我们建议使用
明确的临床验证者,这不仅使基于LV的标签与当代
科学和临床实践,而且还使自动验证和缩小大型
候选标签池。目标是开发一个实用和透明的学习系统
和推论临床研究和实践,我们组建了一支高度跨学科的研究团队
具有潜变量建模、机器学习、心理测量学和因果推理方面的专业知识
具有临床/实质性专业知识。我们简化的学习框架侧重于直接和透明
验证潜在变量解决方案,以确保风险模型开发人员、临床人员之间的清晰沟通
研究人员和从业者。该项目最终旨在通过以下方式改善个性化治疗和护理
改进风险预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BOOIL JO其他文献
BOOIL JO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BOOIL JO', 18)}}的其他基金
A Pragmatic Latent Variable Learning Approach Aligned with Clinical Practice
符合临床实践的实用潜变量学习方法
- 批准号:
10212944 - 财政年份:2020
- 资助金额:
$ 56.55万 - 项目类别:
Heterogeneity in Prevention Intervention Effects On Substance Use: A Latent Varia
预防干预对药物使用影响的异质性:潜在变量
- 批准号:
8295939 - 财政年份:2012
- 资助金额:
$ 56.55万 - 项目类别:
Heterogeneity in Prevention Intervention Effects On Substance Use: A Latent Varia
预防干预对药物使用影响的异质性:潜在变量
- 批准号:
8457018 - 财政年份:2012
- 资助金额:
$ 56.55万 - 项目类别:
Heterogeneity in Prevention Intervention Effects On Substance Use: A Latent Varia
预防干预对药物使用影响的异质性:潜在变量
- 批准号:
8634648 - 财政年份:2012
- 资助金额:
$ 56.55万 - 项目类别:
相似海外基金
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 56.55万 - 项目类别:
Launchpad
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 56.55万 - 项目类别:
Understanding the Effects of Adolescent Nicotine Exposure on Increased Risk for Mood and Anxiety Disorders: Bridging the Gap from Pre-Clinical to Clinical Investigations
了解青少年尼古丁暴露对情绪和焦虑障碍风险增加的影响:弥合临床前研究与临床研究之间的差距
- 批准号:
478121 - 财政年份:2023
- 资助金额:
$ 56.55万 - 项目类别:
Operating Grants
Addressing perinatal mood and anxiety disorders (PMADs) through a doula intervention
通过导乐干预解决围产期情绪和焦虑障碍 (PMAD)
- 批准号:
10861961 - 财政年份:2023
- 资助金额:
$ 56.55万 - 项目类别:
Evaluation of the effectiveness and implementation of online group cognitive behavioral therapy for perinatal women with anxiety disorders.
评估在线团体认知行为治疗对患有焦虑症的围产期妇女的有效性和实施情况。
- 批准号:
22KJ3164 - 财政年份:2023
- 资助金额:
$ 56.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the error-related negativity and the balance N1 in children with anxiety disorders
调查焦虑症儿童的错误相关消极性和平衡 N1
- 批准号:
10685283 - 财政年份:2022
- 资助金额:
$ 56.55万 - 项目类别:
RESONY: Digital therapeutic to manage anxiety disorders
RESONY:管理焦虑症的数字疗法
- 批准号:
10042996 - 财政年份:2022
- 资助金额:
$ 56.55万 - 项目类别:
Grant for R&D
Augmenting the Efficacy of Benzodiazepine Taper with Telehealth-Delivered Cognitive Behavioral Therapy for Anxiety Disorders in Patients Using Prescription Opioids
通过远程医疗提供的认知行为疗法来增强苯二氮卓类药物逐渐减少的疗效,以治疗使用处方阿片类药物的焦虑症患者
- 批准号:
10705005 - 财政年份:2022
- 资助金额:
$ 56.55万 - 项目类别:
Developing an adjunctive mobile application for co-morbid substance use and anxiety disorders: comprehensive user experience testing of the Unwinding Anxiety application
开发针对共病药物使用和焦虑症的辅助移动应用程序:Unwinding Anxiety 应用程序的综合用户体验测试
- 批准号:
10597521 - 财政年份:2022
- 资助金额:
$ 56.55万 - 项目类别:
Investigating the role of neuroinflammation in environmental exposure-induced anxiety disorders
研究神经炎症在环境暴露诱发的焦虑症中的作用
- 批准号:
10573948 - 财政年份:2022
- 资助金额:
$ 56.55万 - 项目类别: